A Study of a Sequence of Classical Orthogonal Polynomials of Dimension 2

Ammar Boukhemis
Institut de Mathématiques, Université d'Annaba, B.P. 12, Annaba 23000, Algeria
Communicated by Alphonse P. Magnus

Received July 29, 1993; accepted in revised form August 29, 1996

Abstract

We construct a sequence of d-dimensional classical orthogonal polynomials $(d \geqslant 2)$ that generalize the Gegenbauer polynomials. The case $d=2$ is fully studied. © 1997 Academic Press

1. INTRODUCTION

We give in this paper a partial answer to the problem which consists of the explicit determination of a sequence of polynomials verifying a recurrence relation of order $d+1(d \geqslant 2)$.

The problem as it is posed constitutes a generalization of the sequences of classical polynomials, which verify this property (Hermite, Laguerre, Jacobi, and Bessel) when $d=1$ [11, 12].

The relation between the polynomial recurrence relation of order $d+1$ and the notion of orthogonality of dimension d has been established in [9]. The fundamental result in the study of the vectorial Padé approximants of d simultaneous formal sequences is:
"A sequence of polynomials is orthogonal of dimension d iff it verifies a recurrence relation of order $d+1$."

In the paper [1], we have shown the existence of two sequences of "classical" polynomials of dimension 2 . These sequences are defined from a Sheffer type generating function.

Part of this work consists of constructing from a generating function a sequence of polynomials verifying a recurrence relation of order $d+1$, where the successive derivatives of order $k(k=1,2, \ldots)$ verify also a recurrence relation of order $d+1$. This sequence generalizes the Gegenbauer polynomials. On the other hand, our aim is to study the properties of this sequence in the particular case when $d=2$.

2. THE d-ORTHOGONAL POLYNOMIALS

Definition $2.1[2,3,9,13,14]$. Let $\Gamma=\left(\Gamma^{1}, \Gamma^{2}, \ldots, \Gamma^{d}\right)^{t}$ be a d-linear form defined on the vector space of polynomials on C. A sequence $\left\{P_{n}\right\}_{n \geqslant 0}$ is said to be a d-dimensional orthogonal polynomial sequence, or simply d-orthogonal with respect to Γ, if it fulfills

$$
\left.\begin{array}{ll}
\Gamma^{\sigma}\left(x^{m} P_{n}(x)\right)=0, & n \geqslant m d+\sigma, \quad m \geqslant 0 \tag{2.1}\\
\Gamma^{\sigma}\left(x^{m} P_{m d+\sigma-1}(x)\right) \neq 0, & m \geqslant 0,
\end{array}\right\}
$$

for each $1 \leqslant \sigma \leqslant d$.
Remark. (a) In this case, the d-dimensional functional Γ is called regular.
(b) If $\left\{P_{n}\right\}_{n \geqslant 0}$ is a d-orthogonal polynomial sequence, then its polynomials are exactly of degree n and can hence be normalized; thus the uniqueness follows.

Definition 2.2 [13]. Let $\left\{P_{n}\right\}_{n \geqslant 0}$ be a sequence of monic polynomials. The sequence of linear forms $\left\{\mathscr{L}_{n}\right\}_{n \geqslant 0}$ defined by

$$
\begin{equation*}
\mathscr{L}_{n}\left(P_{n}\right)=\left\langle\mathscr{L}_{n}, P_{m}\right\rangle=\delta_{n, m}, \quad n, m \geqslant 0 \tag{2.2}
\end{equation*}
$$

is called the dual sequence of $\left\{P_{n}\right\}_{n \geqslant 0}$, where \langle,$\rangle denotes the duality$ bracket between the vector space of polynomials \mathscr{P} and its dual \mathscr{P}^{\prime}.

Lemma 2.1 [13, 15]. Let $f \in \mathscr{P}^{\prime}$ and q be a positive integer. f satisfies

$$
\begin{equation*}
f\left(P_{q-1}\right) \neq 0 \quad \text { and } \quad f\left(P_{n}\right)=0, \quad n \geqslant q \tag{2.3}
\end{equation*}
$$

iff there exist $\lambda_{v} \in C$, for $0 \leqslant v \leqslant q-1$, with $\lambda_{q-1} \neq 0$, such that

$$
\begin{equation*}
f=\sum_{v=0}^{q-1} \lambda_{n} \mathscr{L}_{v} . \tag{2.4}
\end{equation*}
$$

Remark. From the above lemma we deduce

$$
\begin{equation*}
\Gamma^{\sigma}=\sum_{v=0}^{\sigma-1} \lambda_{v}^{\sigma} \mathscr{L}_{v}, \quad \text { with } \quad \lambda_{\sigma-1}^{\sigma} \neq 0 \quad \text { for } \quad 1 \leqslant \sigma \leqslant d \tag{2.5}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\mathscr{L}_{v}=\sum_{\sigma=1}^{v} \xi_{\sigma}^{v} \Gamma^{\sigma}, \quad \text { with } \quad \xi_{v}^{v} \neq 0 \quad \text { for } \quad 0 \leqslant v \leqslant d-1 \tag{2.6}
\end{equation*}
$$

Corollary 2.1. If $\left\{P_{n}\right\}_{n \geqslant 0}$ is a d-orthogonal polynomial sequence with respect to $\mathscr{L}=\left(\mathscr{L}_{0}, \mathscr{L}_{1}, \ldots, \mathscr{L}_{d-1}\right)^{t}$, it is therefore d-orthogonal with respect to $\Gamma=\left(\Gamma^{1}, \Gamma^{2}, \ldots, \Gamma^{d}\right)^{t}$, and reciprocally.

Proposition $2.1[9,13]$. For each sequence $\left\{P_{n}\right\}_{n \geqslant 0}$, the following propositions are equivalent:
(a) The sequence $\left\{P_{n}\right\}_{n \geqslant 0}$ is d-orthogonal with respect to $\mathscr{L}=$ $\left(\mathscr{L}_{0}, \mathscr{L}_{1}, \ldots, \mathscr{L}_{d-1}\right)^{t}$.
(b) The sequence $\left\{P_{n}\right\}_{n \geqslant 0}$ verifies a recurrence relation of order $d+1$,

$$
\begin{equation*}
P_{m+d+1}(x)=\left(x-\beta_{m+d}\right) P_{m+d}(x)-\sum_{v=0}^{d-1} \gamma_{m+d-v}^{d-1-v} P_{m+d-1-v}(x), \quad m \geqslant 0, \tag{2.7}
\end{equation*}
$$

with the initial conditions

$$
\begin{equation*}
P_{0}(x)=1 ; \quad P_{1}(x)=x-\beta_{0} ; \tag{2.8}
\end{equation*}
$$

$P_{m}(x)=\left(x-\beta_{m-1}\right) P_{m-1}(x)-\sum_{v=0}^{m-2} \gamma_{m-1-v}^{d-1-v} P_{m-2-v}(x), \quad 2 \leqslant m \leqslant d$
and the regularity conditions

$$
\gamma_{m+1}^{0} \neq 0, \quad m \geqslant 0 .
$$

Remark. This result constitutes a generalization of Shohat-Favard's theorem.

Definition 2.3 [5, 6]. The d-orthogonal sequence $\left\{P_{n}\right\}_{n \geqslant 0}$ is called "classical" if it satisfies Hahn's property; that is, the sequence $\left\{D P_{n}\right\}_{n \geqslant 0}$ ($D=d / d x$) is also d-orthogonal.

Proposition 2.2.[13]. If $\left\{\widetilde{\mathscr{L}}_{n}\right\}_{n \geqslant 0}$ is the dual sequence of $\left\{D P_{n}\right\}_{n \geqslant 0}$, then

$$
\begin{equation*}
D \tilde{\mathscr{L}}_{n}=-\mathscr{L}_{n+1}, \quad n \geqslant 0, \tag{2.9}
\end{equation*}
$$

where

$$
\left\langle D \widetilde{\mathscr{L}}_{n}, p(x)\right\rangle=-\left\langle\widetilde{\mathscr{L}}_{n}, p^{\prime}(x)\right\rangle, \quad \forall p \in \mathscr{P} .
$$

3. GENERATING FUNCTIONS AND POLYNOMIAL RECURRENCE RELATIONS

Definition 3.1. A function $\Phi(x, t)$ that can be written as a power series in the variable is said to be a generating function for a sequence $\left\{P_{n}\right\}_{n \geqslant 0}$ if it can be represented in the form

$$
\Phi(x, t)=\sum_{n \geqslant 0} c_{n} P_{n}(x) t^{n}, \quad c_{n} \neq 0, \quad n \geqslant 0 .
$$

Lemma 3.1. Let $\left\{B_{n}\right\}_{n \geqslant 0}$ be a sequence of monic polynomials that satisfies a recurrence relation of order $d+1(d \geqslant 2)$, with constant coefficients

$$
\left.\begin{array}{lc}
B_{0}(x)=1 ; & B_{j}(x)=x B_{j-1}(x)-\sum_{k=1}^{j} \gamma_{k} B_{j-k}(x), \\
1 \leqslant j \leqslant d ; \tag{3.1}\\
B_{n+d+1}(x)=x B_{n+d}(x)-\sum_{k=1}^{d+1} \gamma_{k} B_{n+d+1-k}(x), & n \geqslant 0,
\end{array}\right\}
$$

with $\gamma_{d+1} \neq 0$.
If $G(x, t)$ is a generating function of the sequence $\left\{B_{n}\right\}_{n \geqslant 0}$,

$$
\begin{equation*}
G(x, t)=\sum_{n \geqslant 0} B_{n}(x) t^{n}, \tag{3.2}
\end{equation*}
$$

then

$$
\begin{equation*}
G(x, t)=\left(1-x t+\sum_{k=1}^{d+1} \gamma_{k} t^{k}\right)^{-1} \tag{3.3}
\end{equation*}
$$

Proof. It is sufficient to multiply (3.1) by t^{n+1}, and then to sum over n.
Let us now consider the generating function of the sequence of polynomials denoted by $\left\{B_{n}^{\alpha}\right\}_{n \geqslant 0}$. It is defined by

$$
\begin{equation*}
G_{\alpha}(x, t)=\left(1-x t+\sum_{k=1}^{d+1} \gamma_{k} t^{k}\right)^{-\alpha}=\sum_{n \geqslant 0} B_{n}^{\alpha}(x) t^{n}, \quad \text { for } \quad n \neq-1, \neq 2, \ldots \tag{3.4}
\end{equation*}
$$

Remark. The polynomials $B_{n}^{\alpha}(x)$ are more general than those of Legendre and Gegenbauer and those studied by Humbert, Pincherle, and Devisme [7].

Lemma 3.2. The generating function $G_{\alpha}(x, t)$ defined by (3.4) satisfies the following relations:

$$
\begin{align*}
& \left(1-x t+\sum_{k=1}^{d+1} \gamma_{k} t^{k}\right) \frac{\partial G_{\alpha}}{\partial t}=\alpha\left(x-\sum_{k=1}^{d+1} k \gamma_{k} t^{k}\right) G_{\alpha}(x, t), \tag{3.5}\\
& \left(1-x t+\sum_{k=1}^{d+1} \gamma_{k} t^{k}\right) \frac{\partial G_{\alpha}}{\partial x}=\alpha t G_{\alpha}(x, t), \tag{3.6}
\end{align*}
$$

and

$$
\begin{equation*}
t \frac{\partial G_{\alpha}}{\partial t}=\left(x-\sum_{k=1}^{d+1} k \gamma_{k} t^{k-1}\right) \frac{\partial G_{\alpha}}{\partial x} \tag{3.7}
\end{equation*}
$$

Lemma 3.3. The sequence $\left\{B_{n}^{\alpha}\right\}_{n \geqslant 0}$ satisfies the following recurrence relation of order $d+1$:

$$
\left.\begin{array}{l}
B_{0}^{\alpha}(x)=1 ; \\
j B_{j}^{\alpha}(x)=(j-1+\alpha) x B_{j-1}^{\alpha}(x)-\sum_{k=1}^{j}(j-k+k \alpha) \gamma_{k} B_{j-k}^{\alpha}(x), \\
\quad 1 \leqslant j \leqslant d ; \\
(n+1+d) B_{n+d+1}^{\alpha}(x) \\
=(n+d+\alpha) x B_{n+d}^{\alpha}(x)-\sum_{k=1}^{d+1}(n+1+d+k \alpha-k) \gamma_{k} B_{n+d+1-k}^{\alpha}(x), \\
n \geqslant 0 . \tag{3.8}
\end{array}\right\}
$$

Proof. It is sufficient to replace $\partial G_{\alpha} / \partial t$ and G_{α} in (3.5) by their respective values, and then we identify the coefficients of power of t.

Lemma 3.4. The sequence $\left\{B_{n}^{\alpha}\right\}_{n \geqslant 0}$ satisfies the following relations:

$$
\begin{align*}
& \alpha B_{j}^{\alpha}(x)=D B_{j+1}^{\alpha}(x)-x D B_{j}^{\alpha}(x)+\sum_{k=1}^{j} \gamma_{k} D B_{j+1-k}^{\alpha}(x) \\
& \quad 1 \leqslant j \leqslant d ; \\
& \alpha B_{n+d+1}^{\alpha}(x)=D B_{n+d+2}^{\alpha}(x)-x D B_{n+d+1}^{\alpha}(x)+\sum_{k=1}^{d+1} \gamma_{k} D B_{n+d+2-k}^{\alpha}(x), \\
& \quad n \geqslant 0, \tag{3.9}
\end{align*}
$$

and

$$
\begin{align*}
& k B_{j}^{\alpha}(x)=x D B_{j}^{\alpha}(x)-\sum_{k=1}^{j} k \gamma_{k} D B_{j+1-k}^{a}(x) \\
& 1 \leqslant j \leqslant d \\
& (n+d+1) B_{n+d+1}^{\alpha}(x)=x D B_{n+d+1}^{\alpha}(x)-\sum_{k=1}^{d+1} k \gamma_{k} D B_{n+d+2-k}^{\alpha}(x) \\
& n \geqslant 0 \tag{3.10}
\end{align*}
$$

Proof. It is sufficient to replace $\partial G_{\alpha} / \partial x$ and G_{α} in (3.6) by their respective values, and then we identify the coefficients of power of t to obtain (3.9).

Similarly, we obtain (3.10) by replacing $\partial G_{\alpha} / \partial x$ and $\partial G_{\alpha} / \partial t$ in (3.7) by their respective values.

COROLLARY 3.1. Differentiating the relations (3.9) and (3.10) m times $(m \leqslant n)$, and letting $D^{m}=d^{m} / d x^{m}$, we obtain the following relations for $0 \leqslant m \leqslant n$, with $n \geqslant 0$:

$$
\begin{aligned}
& (\alpha+m) D^{m} B_{n+d+1}^{\alpha}(x) \\
& \quad=D^{m+1} B_{n+d+2}^{\alpha}(x)-x D^{m+1} B_{n+d+1}^{\alpha}(x)+\sum_{k=1}^{d+1} \gamma_{k} D^{m+1} B_{n+d+2-k}^{\alpha}(x)
\end{aligned}
$$

$$
(n+d+1-m) D^{m} B_{n+d+1}^{\alpha}(x)
$$

$$
\begin{equation*}
=x D^{m+1} B_{n+d+2}^{\alpha}(x)-\sum_{k=1}^{d+1} k \gamma_{k} D^{m+1} B_{n+d+2-k}^{\alpha}(x) \tag{3.12}
\end{equation*}
$$

ThEOREM 3.1. The sequence of derivatives $\left\{D^{m+1} B_{n}^{\alpha}\right\}_{n \geqslant 0},(m<n)$ also satisfies a recurrence relation of order $d+1$:

$$
\begin{align*}
& (n+d+1-m) D^{m+1} B_{n+d+2}^{\alpha}(x) \\
& \quad=(n+d+1+\alpha) x D^{m+1} B_{n+d+1}^{\alpha}(x) \\
& \quad-\sum_{k=1}^{d+1}[n+d+1+k \alpha-(k-1) m] \gamma_{k} D^{m+1} B_{n+d+2-k}^{\alpha}(x) \\
& \quad 0 \leqslant m \leqslant n ; \quad n \geqslant 0 . \tag{3.13}
\end{align*}
$$

Proof. We cancel $D^{m} B_{n+d+1}(x)$ by taking a linear combination of (3.11) and (3.12).

Remark. It follows that the sequence $\left\{B_{n}^{\alpha}\right\}_{n \geqslant 0}(\alpha \neq-1, \neq-2, \ldots)$ is a sequence of d-dimensional classical orthogonal polynomials.

4. PROPERTIES OF $\left\{B_{n}^{\alpha}\right\}_{n \geqslant 0}$

Remarks. (a) From the generating function (3.4) and Cauchy's integral formula, $\left\{B_{n}^{\alpha}\right\}_{n \geqslant 0}$ can be written in the form

$$
\begin{align*}
B_{n}^{\alpha}(x) & =\frac{1}{2 \pi i} \oint \frac{d t}{t^{n+1}\left(1-x t+\sum_{k=1}^{d+1} \gamma_{k} t^{k}\right)^{\alpha}} \\
& =\frac{1}{2 \pi i \gamma_{d+1}^{\alpha}} \oint \frac{d t}{t^{n+1} \prod_{k=1}^{d+1}\left[t-\tau_{k}(x)\right]^{\alpha}}, \tag{4.1}
\end{align*}
$$

where $\tau_{1}(x), \tau_{2}(x), \ldots, \tau_{d+1}(x)$ are the $(d+1)$ zeros of

$$
\begin{equation*}
1-x \tau+\sum_{k=1}^{d+1} \gamma_{k} \tau^{k}=0 \tag{4.2}
\end{equation*}
$$

with $\left|\tau_{1}(x)\right| \leqslant\left|\tau_{2}(x)\right| \leqslant \ldots \leqslant\left|\tau_{d+1}(x)\right|$.
(b) We can see that $B_{n}^{\alpha}(x)$ behaves like the nth power of $1 / \tau_{1}(x)$.

Lemma 4.1. The recurrence relation (3.8) can be written in the form

$$
\begin{equation*}
x \mathbf{b}=\mathbf{M} \mathbf{b}, \tag{4.3}
\end{equation*}
$$

where

$$
\mathbf{b}=\left[\begin{array}{c}
B_{0}^{\alpha} \\
B_{1}^{\alpha}(x) \\
\vdots
\end{array}\right]
$$

and

$$
\mathbf{M}=\left[\begin{array}{ccccc}
\gamma_{1} & \frac{1}{\alpha} & 0 & 0 & \cdots \\
\frac{2 \alpha}{\alpha+1} \gamma_{2} & \gamma_{1} & \frac{2}{\alpha+1} & 0 & \cdots \\
\frac{3 \alpha}{\alpha+2} \gamma_{3} & \frac{2 \alpha+1}{\alpha+2} \gamma_{2} & \gamma_{1} & \frac{3}{\alpha+2} & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\frac{(d+1) \alpha}{\alpha+d} \gamma_{d+1} & \frac{d \alpha+1}{\alpha+d} \gamma_{d} & \frac{(d-1) \alpha+2}{\alpha+d} \gamma_{d-1} & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots &
\end{array}\right] .
$$

Proposition 4.1. The moments of \mathscr{L}_{v} are given by

$$
\begin{equation*}
\mathscr{L}_{v}\left(x^{n}\right)=M_{0, v}^{n}, \quad n \geqslant 0, \tag{4.4}
\end{equation*}
$$

where $M_{0, v}^{n}$ is the element of the first line and the $(v+1)$ th column of \mathbf{M}^{n}.
Proof. Multiplying the relation (4.3) $(n-1)$ times by M, we obtain

$$
x^{n} \mathbf{b}=\mathbf{M}^{n} \mathbf{b} .
$$

In particular

$$
x^{n}=\sum_{j \geqslant 0} M_{0, j}^{n} B_{j}^{\alpha}(x) .
$$

Applying now \mathscr{L}_{v}, we get

$$
\mathscr{L}_{v}\left(x^{n}\right)=\sum_{j \geqslant 0} M_{0, j}^{n} \mathscr{L}_{v}\left(B_{j}^{\alpha}(x)\right)=M_{0, v}^{n} .
$$

Lemma 4.2. The forms $\left\{\mathscr{L}_{v}\right\}_{v \geqslant 0}$ satisfy the relation

$$
\begin{equation*}
\frac{v \mathscr{L}_{v-1}(p)}{\alpha+v-1}-(\alpha+v) \frac{\mathscr{L}_{v}(x p)}{\alpha+v}+\sum_{k=1}^{d+1}(k \alpha+v) \gamma_{k} \frac{\mathscr{L}_{v+k-1}(p)}{\alpha+v+k-1}=0, \quad \forall p \in \mathscr{P} . \tag{4.5}
\end{equation*}
$$

Proof. We have

$$
x^{n+1} \mathbf{b}=\mathbf{M}^{n+1} \mathbf{b}
$$

In particular

$$
x^{n+1}=\sum_{j \geqslant 0} M_{0, j}^{n+1} B_{j}^{\alpha}(x)=\sum_{j \geqslant 0} M_{0, j}^{n} x B_{j}^{\alpha}(x) .
$$

Applying now \mathscr{L}_{v}, we get

$$
\mathscr{L}_{v}\left(x^{n+1}\right)=M_{0, v}^{n+1}=\frac{v}{\alpha+v-1} M_{0, v-1}^{n}+\sum_{k=1}^{d+1} \frac{k \alpha+v}{\alpha+v+k-1} \gamma_{k} M_{0, v+k-1}^{n} .
$$

That is,

$$
\mathscr{L}_{v}\left(x^{n+1}\right)=\frac{v}{\alpha+v-1} \mathscr{L}_{v-1}\left(x^{n}\right)+\sum_{k=1}^{d+1} \frac{k \alpha+v}{\alpha+v+k-1} \gamma_{k} \mathscr{L}_{v+k-1}\left(x^{n}\right),
$$

and by the linearity of \mathscr{L}_{v}, this relation is true for any polynomial p; thus (4.5) follows.

Lemma 4.5. Let $\left\{\widetilde{\mathscr{L}}_{v}\right\}_{v \geqslant 0}$ be the dual sequence of $\left\{D B_{n+1}\right\}_{n \geqslant 0}$; then

$$
\begin{equation*}
\mathscr{L}_{v+1}(p)=\tilde{\mathscr{L}}_{v}\left(p^{\prime}\right)=\frac{\mathscr{L}_{v}\left(p^{\prime}\right)}{\alpha+v}-\sum_{j=2}^{d+1}(j-1) \gamma_{j} \frac{\mathscr{L}_{v+j}\left(p^{\prime}\right)}{\alpha+v+j}, \quad \forall p \in \mathscr{P} . \tag{4.6}
\end{equation*}
$$

Proof. Adding term by term the relations (3.9) and (3.10), we obtain

$$
(\alpha+k) B_{k}^{\alpha}(x)=D B_{k+1}^{\alpha}(x)-\sum_{j=2}^{\min (k, d+1)}(j-1) \gamma_{j} D B_{k+1-j}^{\alpha}(x), \quad n \geqslant 0 .
$$

Applying now $\widetilde{\mathscr{L}}_{v}$, we get

$$
\tilde{\mathscr{L}}_{v}\left(B_{k}(x)\right)=\frac{\delta_{k, v}}{\alpha+v}-\sum_{j=2}^{\min (k, d+1)}(j-1) \gamma_{j} \frac{\delta_{k, v+j}}{\alpha+v+j} .
$$

Thus

$$
\tilde{\mathscr{L}}_{v+1}=\frac{\mathscr{L}_{v}}{\alpha+v}-\sum_{j=2}^{d+1}(j-1) \gamma_{j} \frac{\mathscr{L}_{v+j}}{\alpha+v+j},
$$

and by the linearity of \mathscr{L}_{v} and $\widetilde{\mathscr{L}}_{v}$ this relation is true for any polynomial p; thus (4.6) follows.

Theorem 4.1. The forms $\mathscr{L}_{v} /(\alpha+v)$ have an integral representation in the form

$$
\begin{equation*}
\frac{\mathscr{L}_{v}(f)}{\alpha+v}=\int_{x_{1}}^{x_{2}} w_{v}(x) f(x) d x=\int_{x_{1}}^{x_{2}} \int_{t_{1}(x)}^{t_{2}(x)} t^{v} K(x, t) f(x) d t d x, \tag{4.7}
\end{equation*}
$$

with

$$
\begin{aligned}
K(x, t) & =\text { constant }\left(1-x t+\sum_{k=1}^{d+1} \gamma_{k} t^{k}\right)^{\alpha-1} \\
& =\text { constant } \prod_{k=1}^{d+1}\left[t-t_{k}(x)\right]^{\alpha-1}, \quad \text { if } \quad \alpha>0 .
\end{aligned}
$$

That is,

$$
\begin{equation*}
w_{v}(x)=\int_{t_{1}(x)}^{t_{2}(x)} t^{v} \prod_{k=1}^{d+1}\left[t-t_{k}(x)\right]^{\alpha-1} d t \tag{4.8}
\end{equation*}
$$

where $t_{1}(x)=\tau_{1}(x), t_{2}(x)=\tau_{2}(x), \ldots$ and x_{1} and x_{2} are two values such that $\tau_{1}(x)=\tau_{2}(x)$.

Proof. From (4.5) we have

$$
\int_{x_{1}}^{x_{2}} \int_{t_{1}(x)}^{t_{2}(x)} t^{v} K(x, t)\left[\frac{v}{t}-(\alpha+v) x+\sum_{k=1}^{d+1}(k \alpha+v) \gamma_{k} t^{k-1}\right] d t f(x) d x=0 .
$$

This implies that

$$
\int_{x_{1}}^{x_{2}} \int_{t_{1}(x)}^{t_{2}(x)} t^{v} K(x, t) \frac{(\partial / \partial t)\left[t^{v}\left(1-x t+\sum_{k=1}^{d+1} \gamma_{k} t^{k}\right)^{\alpha}\right]}{t^{v}\left(1-x t+\sum_{k=1}^{d+1} \gamma_{k} t^{k}\right)^{\alpha-1}} d t f(x) d x=0 .
$$

Hence, it is sufficient to take

$$
K(x, t)=h(x)\left(1-x t+\sum_{k=1}^{d+1} \gamma_{k} t^{k}\right)^{\alpha-1}
$$

and to have

$$
1-x t+\sum_{k=1}^{d+1} \gamma_{k} t^{k}=0, \quad \text { for } \quad t=t_{1}(x) \text { and } t=t_{2}(x), \quad(\text { if } \alpha>0) .
$$

Thus the limits of integration are $t_{1}(x)=\tau_{1}(x)$ and $t_{2}(x)=\tau_{2}(x)$; in addition x_{1} and x_{2} are two values such that $\tau_{1}(x)=\tau_{2}(x)$.

To determine $h(x)$, let W_{v+1} be a primitive of w_{v+1}; then we have

$$
\begin{aligned}
\mathscr{L}_{v+1}(f) & =(v+\alpha+1) \int_{x_{1}}^{x_{2}} w_{v+1}(x) f(x) d x \\
& =-(v+\alpha+1) \int_{x_{1}}^{x_{2}} W_{v+1}(x) f^{\prime}(x) d x,
\end{aligned}
$$

and from (4.6), we get

$$
\begin{aligned}
-(v+ & \alpha+1) W_{v+1}(x) \\
= & w_{v}(x)-\sum_{j=2}^{d=1}(j-1) \gamma_{j} w_{v+j}(x) \\
= & h(x) \int_{t_{1}(x)}^{t_{2}(x)} t^{v}\left(1-x t+\sum_{j=1}^{d+1} \gamma_{j} t^{j}\right)^{\alpha-1}\left[1-\sum_{j=2}^{d+1}(j-1) \gamma_{j} t^{j}\right] d t \\
= & -h(x) \int_{t_{1}(x)}^{t_{2}(x)} t^{v+\alpha+1}\left[t^{-1}\left(1-x t+\sum_{j=1}^{d+1} \gamma_{j} t^{j}\right)\right]^{\alpha-1} \\
& \times \frac{\partial}{\partial t}\left[t^{-1}\left(1-x t+\sum_{j=1}^{d+1} \gamma_{j} t^{j}\right)\right] d t \\
= & \frac{(v+\alpha+1)}{\alpha} h(x) \int_{t_{1}(x)}^{t_{2}(x)} t^{v}\left[1-x t+\sum_{j=1}^{d+1} \gamma_{j} t^{j}\right]^{\alpha} d t
\end{aligned}
$$

Differentiating the last expression with respect to x, we obtain (4.8) with $h(x)=$ constant .

Remark. When $d=1$, we obtain

$$
w_{0}(x)=\operatorname{constant}\left[t_{2}(x)-t_{1}(x)\right]^{2 \alpha-1},
$$

which is the density function of Gegenbauer's polynomials.

5. STUDY OF THE CASE $d=2$

Corollary 5.1. If we put $\gamma_{1}=\beta, \gamma_{2}=\gamma$, and $\gamma_{3}=\delta$, we obtain from relations (3.4), (3.8), and (3.13), with $d=2$,

$$
\begin{align*}
& G_{\alpha}(x, t)=\left[1-(x-\beta) t+\gamma t^{2}+\delta t^{3}\right]^{-\alpha} \\
& =\sum_{n \geqslant 0} B_{n}^{\alpha}(x) t^{n}, \quad \text { for } \quad n \neq-1, \neq-2, \ldots \tag{5.1}\\
& B_{0}^{\alpha}(x)=1 ; \quad B_{1}^{\alpha}(x)=\alpha(x-\beta) ; \\
& B_{2}^{\alpha}(x)=\frac{\alpha}{2}\left[(\alpha+1)(x-\beta)^{2}-2 \gamma\right] ; \\
& (n+3) B_{n+3}^{\alpha}(x)= \\
& \tag{5.2}\\
& \\
& \\
& \quad(n+2+\alpha)(x-\beta) B_{n+2}^{\alpha}(x)-(n+1+2 \alpha) \delta B_{n}^{\alpha}(x), \quad n \geqslant 0
\end{align*}
$$

and

$$
\begin{align*}
(n+3) D^{m+1} B_{n+4}^{\alpha}(x)= & (n+3+\alpha)(x-\beta) D^{m+1} B_{n+3}^{\alpha}(x) \\
& -(n+3+2 a+m) \gamma D^{m+1} B_{n+2}^{\alpha}(x) \\
& -(n+3+3 \alpha+2 m) \delta D^{m+1} B_{n+1}^{\alpha}(x), \\
& 0 \leqslant m \leqslant n ; \quad n \geqslant 0 . \tag{5.3}
\end{align*}
$$

Corollary 5.2. Let

$$
B_{n}^{\alpha}(x)=\frac{[\alpha]_{n}}{n!} \widetilde{B}_{n}^{\alpha}(x) \quad \text { and } \quad Q_{n}^{\alpha}(x)=\frac{D \widetilde{B}_{n+1}^{\alpha}(x)}{n+1}
$$

where $[\alpha]_{n}=\alpha(\alpha+1) \cdots(\alpha+n-1), n \geqslant 1$, and $[\alpha]_{0}=1$.

Then the sequences $\left\{\widetilde{B}_{n}^{\alpha}\right\}_{n \geqslant 0}$ and $\left\{Q_{n}^{\alpha}\right\}_{n \geqslant 0}$ are two monic sequence. Then satisfy, respectively, the following recurrence relations:

$$
\left.\begin{array}{rl}
\widetilde{B}_{0}^{\alpha}=1 ; & \widetilde{B}_{1}^{\alpha}(x)=x-\beta ; \quad \widetilde{B}_{2}^{\alpha}(x)=(x-\beta)^{2}-\frac{2 \gamma}{\alpha+1} \\
\widetilde{B}_{n+3}^{\alpha}(x)= & (x-\beta) \widetilde{B}_{n+2}^{\alpha}(x)-\frac{(n+2)(n+1+2 \alpha)}{(n+1+\alpha)(n+2+\alpha)} \gamma \widetilde{B}_{n+1}^{\alpha}(x) \tag{5.4}\\
& -\frac{(n+1)(n+2)(n+3 \alpha)}{(n+\alpha)(n+1+\alpha)(n+2+\alpha)} \delta \widetilde{B}_{n}^{\alpha}(x), \quad n \geqslant 0
\end{array}\right\}
$$

and

$$
\begin{align*}
Q_{n+3}(x)= & (x-\beta) Q_{n+2}(x)-\frac{(n+2)(n+3+2 \alpha)}{(n+2+\alpha)(n+3+\alpha)} \gamma Q_{n+1}(x) \\
& -\frac{(n+1)(n+2)(n+3+3 \alpha)}{(n+1+\alpha)(n+2+\alpha)(n+3+\alpha)} \delta Q_{n}(x), \quad n \geqslant 0 . \tag{5.5}
\end{align*}
$$

Remarks. (a) The sequence $\left\{\widetilde{B}_{n}^{\alpha}\right\}_{n \geqslant 0}$ corresponds to the case A in [5] (which is not 2 -symmetric when $\beta=0$, because it can be concluded that $\gamma_{n+1}^{1} \neq 0$), and from this, the conclusions concerning this case are not complete.
(b) The relations of Section 3 are between the polynomials of the same index. If we omit this restriction, we can find other sample relations that generalize the classical identities of Gegenbauer's polynomials. Note, for example,

$$
\begin{align*}
D^{m} B_{n}^{\alpha}(x) & =(-1)^{m}[\alpha]_{m} B_{n-m}^{\alpha+m}(x) ; \tag{5.6}\\
Q_{n}^{\alpha}(x)= & \widetilde{B}_{n}^{\alpha+1}(x) ; \tag{5.7}\\
\widetilde{B}_{n}^{\alpha+1}(x)= & \frac{n!}{(n+\alpha)!} D^{\alpha} \widetilde{B}_{n+\alpha}^{\alpha}(x), \quad \text { if } \alpha \in N ; \tag{5.8}\\
\widetilde{B}_{n+3}^{\alpha}(x)= & (x-\beta) \widetilde{B}_{n+2}^{\alpha+1}(x)-\frac{2(n+2)}{n+2+\alpha} \gamma \widetilde{B}_{n+1}^{\alpha+1}(x) \\
& -\frac{3(n+1)(n+2)}{(n+1+\alpha)(n+2+\alpha)} \delta \widetilde{B}_{n}^{\alpha+1}(x) ; \tag{5.9}
\end{align*}
$$

and

$$
\begin{align*}
\widetilde{B}_{n+3}^{\alpha}(x)= & \frac{1}{3(n+2+\alpha)}\left\{2(n+2)\left[(x-\beta)^{2}-\gamma\right] \widetilde{B}_{n+1}^{\alpha+1}(x)\right. \\
& -\frac{(n+1)(n+2)}{n+1+\alpha}[\gamma(x-\beta)+2 \delta] \widetilde{B}_{n}^{\alpha+1} \\
& \left.+\left((n+2+3 \alpha)(x-\beta) \widetilde{B}_{n+2}^{\alpha}(x)\right)\right\} \\
& n \geqslant 0 . \tag{5.10}
\end{align*}
$$

Proposition 5.1. If the equation

$$
\begin{equation*}
Z(x, \tau)=1-(x-\beta) \tau+\gamma \tau^{2}+\delta \tau^{3}=0 \tag{5.11}
\end{equation*}
$$

has a double root $\tau_{1}(x)=\tau_{2}(x)$, then x must satisfy the equation
$P(x)=-4 \delta(x-\beta)^{3}-\gamma^{2}(x-\beta)^{2}+18 \gamma \delta(x-\beta)+4 \gamma^{3}+27 \delta^{2}=0$.
Proof. We have

$$
\left.\begin{array}{l}
\frac{\partial Z}{\partial \tau}=-(x-\beta)+2 \gamma \tau+3 \delta \tau^{2}=0 \\
Z(x, t)=1-(x-\beta) \tau+\gamma \tau^{2}+\delta \tau^{3}=0
\end{array}\right\}
$$

Thus $\tau=(9 \delta+(x-\beta) \gamma) / 2\left[3 \delta(x-\beta)+\gamma^{2}\right]$, and if we replace τ by this value, we obtain (5.12).

Proposition 5.2. If $\alpha \in N(\alpha>0)$, then

$$
\begin{align*}
w_{0}(x)= & \frac{(-1)^{\alpha}}{\alpha}\left[t_{2}(x)-t_{1}(x)\right]^{2 \alpha-1} \sum_{k=0}^{\alpha-1} \frac{\binom{k}{\alpha-1}}{\binom{\alpha}{2 \alpha+k-1}} \\
& \times\left[t_{1}(x)-t_{3}(x)\right]^{\alpha-1-k}\left[t_{2}(x)-t_{1}(x)\right]^{k} \\
= & \frac{(-1)^{\alpha}}{\alpha}\left[t_{2}(x)-t_{1}(x)\right]^{2 \alpha-1} \sum_{j=0}^{\alpha-1}\left\{\sum_{k=j}^{\alpha-1}(-1)^{j+k} \frac{\binom{k}{\alpha-1}\binom{j}{k}}{\binom{\alpha}{2 \alpha+k-1}}\right\} \\
& \times\left[t_{2}(x)-t_{3}(x)\right]^{j}\left[t_{1}(x)-t_{3}(x)\right]^{\alpha-1-j}, \tag{5.13}
\end{align*}
$$

and

$$
\begin{align*}
w_{1}(x)= & (-1)^{\alpha}\left[t_{2}(x)-t_{1}(x)\right]^{2 \alpha-1} \sum_{k=0}^{\alpha-1} \frac{\binom{k}{\alpha-1}}{\binom{\alpha-1}{2 \alpha+k}} \\
& \times\left[t_{1}(x)-t_{3}(x)\right]^{\alpha-1-k}\left[t_{2}(x)-t_{1}(x)\right]^{k}\left[(\alpha+k) t_{2}(x)+\alpha t_{1}(x)\right] . \tag{5.14}
\end{align*}
$$

Proof. We have

$$
\begin{aligned}
w_{0}(x)= & \int_{t_{1}(x)}^{t_{2}(x)}\left[t-t_{1}(x)\right]^{\alpha-1}\left[t-t_{2}(x)\right]^{\alpha-1}\left[t-t_{3}(x)\right]^{\alpha-1} d t \\
= & \int_{t_{1}(x)}^{t_{2}(x)}\left[t-t_{1}(x)\right]^{\alpha-1}\left[t-t_{2}(x)\right]^{\alpha-1} \sum_{k=0}^{\alpha-1}\binom{k}{\alpha-1} \\
& \times\left[t-t_{1}(x)\right]^{k}\left[t_{1}(x)-t_{3}(x)\right]^{\alpha-1-k} d t \\
= & \sum_{k=0}^{\alpha-1}\binom{k}{\alpha-1}\left[t_{1}(x)-t_{3}(x)\right]^{\alpha-1-k} \\
& \times \int_{t_{1}(x)}^{t_{2}(x)}\left[t-t_{1}(x)\right]^{\alpha-1+k}\left[t-t_{2}(x)\right]^{\alpha-1} d t \\
= & \left.\frac{(-1)^{\alpha}}{\alpha}\left[t_{2}(x)-t_{1}(x)\right]^{2 \alpha-1} \sum_{k=0}^{\alpha-1} \frac{\binom{k}{\alpha-1}}{\alpha} \begin{array}{c}
\alpha \\
2 \alpha+k-1
\end{array}\right) \\
& \times\left[t_{1}(x)-t_{3}(x)\right]^{\alpha-1-k}\left[t_{2}(x)-t_{1}(x)\right]^{k} .
\end{aligned}
$$

The relation (5.14) can be obtained similarly, by writting

$$
\begin{aligned}
w_{1}(x)= & \int_{t_{1}(x)}^{t_{2}(x)}\left\{\left[t-t_{1}(x)\right]+t_{1}(x)\right\}\left[t-t_{1}(x)\right]^{\alpha-1}\left[t-t_{2}(x)\right]^{\alpha-1} \\
& \times\left[t-t_{3}(x)\right]^{\alpha-1} d t .
\end{aligned}
$$

Theorem 5.1. The sequence of polynomials $\left\{B_{n}^{\alpha}\right\}_{n \geqslant 0}$ satisfies the following third-order differential equation,

$$
\begin{equation*}
r_{1, n}(x) S_{3}(x) Y^{(3)}+b_{3, n}(x) Y^{\prime \prime}+c_{2, n}(x) Y^{\prime}+d_{1, n}(x) Y=0 \tag{5.15}
\end{equation*}
$$

with

$$
\begin{align*}
S_{3}(x)= & 3 P(x), \\
r_{1, n}(x)= & 3(3 n+3 \alpha+1) \gamma \delta x+2 n \gamma^{3}+27(n+1+3 \alpha) \delta^{2}, \\
b_{3, n}(x)= & \frac{2 \alpha+3}{2} D S_{3}(x) r_{1, n}(x)-D r_{1, n} S_{3}(x), \\
c_{2, n}(x)= & 3\{[(n-2-3 \alpha)(n+5+3 \alpha)+2 n(n+3 \alpha)] \delta x \\
& \left.\quad+(n-1)(n+1+2 \alpha) \gamma^{2}\right\} r_{1, n}(x) \\
& \quad-\left[6(n-2-3 \alpha) \delta x^{2}+(n-3-6 \alpha) \gamma^{2} x-9(n-1) \gamma \delta\right] D r_{1, n}, \\
d_{1, n}(x)= & n(n+3 \alpha)\left[3(n+3+3 \alpha) \delta r_{1, n}(x)-\left(6 \delta x+2 \gamma^{2}\right) D r_{1, n}\right], \tag{5.16}
\end{align*}
$$

and the substitution $x \mapsto x+\beta$.
Proof. Differentiating the relation (5.2) with n replaced by $n-2$, we have

$$
\begin{align*}
& (n+1) D B_{n+1}^{\alpha}-(n+\alpha) x D B_{n}^{\alpha}+(n+2 \alpha-1) \gamma D B_{n-1}^{\alpha} \tag{R1}\\
& \quad+(n+3 \alpha-2) \delta D B_{n-2}^{\alpha}-(n+\alpha) B_{n}^{\alpha}=0 .
\end{align*}
$$

By eliminating $D B_{n-2}^{\alpha}$, using the relations (R1) and (3.11), in which we replace m by 0 and change n to $n-3$, we obtain

$$
\begin{equation*}
3 D B_{n+1}^{\alpha}-(n+\alpha) B_{n}^{\alpha}-2 x D B_{n}^{\alpha}+\gamma D B_{n-1}^{\alpha}=0 . \tag{R2}
\end{equation*}
$$

In the same way, eliminating $D B_{n+1}^{\alpha}$ by taking a linear combination of relation (3.11) and (R2), we get
(R3) $3(n+3) B_{n+1}^{\alpha}-2\left(x^{2}-3 \gamma\right) D B_{n}^{\alpha}-(n+3 \alpha) x B_{n}^{\alpha}+(\gamma x+9 \delta) D B_{n-1}^{\alpha}=0$, and then differentiating (R3) and eliminating $D B_{n+1}^{\alpha}$, we obtain

$$
\begin{align*}
& -2\left(x^{2}-3 \gamma\right) D^{2} B_{n}^{\alpha}+(n-3 \alpha-2) x D B_{n}^{\alpha}+n(n+3 \alpha) B_{n}^{\alpha} \tag{R4}\\
& \quad-n \gamma D B_{n-1}^{\alpha}+(\gamma x+9 \delta) D^{2} B_{n-1}^{\alpha}=0 .
\end{align*}
$$

Using (R2) and (3.11), we eliminate $D B_{n-1}^{\alpha}$ and replace n by $n-1$; we obtain
(R5) $\quad(\gamma x+9 \delta) D B_{n}^{\alpha}-n \gamma B_{n}^{\alpha}-2\left(3 \delta x+\gamma^{2}\right) D B_{n-1}^{\alpha}-3(n+3 \alpha-1) \delta B_{n-1}^{\alpha}=0$.

Differentiating (R5) and eliminating $D^{2} B_{n-1}^{\alpha}$ using (R4), we have (R6) $S_{3}(x) D^{2} B_{n}^{\alpha}+\left[2(n-2-3 \alpha)\left(3 \delta x^{2}+\gamma^{2} x\right)-(n-1)(\gamma x+9 \delta) \gamma\right] D B_{n}^{\alpha}$

$$
+2 n(n+3 \alpha)\left(3 \delta x+\gamma^{2}\right) B_{n}^{\alpha}-r_{1, n}(x) D B_{n-1}^{\alpha}=0 .
$$

Finally we differentiate (R6) and eliminate $D^{2} B_{n-1}^{\alpha}$ and then $D B_{n-1}^{\alpha}$ by combining it with relations (R4) and (R6) to obtain Eq. (5.15).

Theorem 5.2. The zero of $r_{1, n}(x)$ is an apparent singularity of the differential equation (5.15).

Proof. (We use the same notation as that given in [8].) Set $X=x-r^{*}$, where r^{*} is the zero of $r_{1, n}(x) \quad\left(r^{*}=\left(-2 n \gamma^{3}+27(n+1+3 \alpha) \delta^{2}\right) /\right.$ $3(3 n+1+3 \alpha) \gamma \delta)$. Then Eq. (5.15) can be written in the form

$$
\begin{aligned}
& {\left[S_{3}\left(r^{*}\right)+D S_{3}\left(r^{*}\right) X+\frac{D^{2} S_{3}\left(r^{*}\right)}{2} X^{2}+\frac{D^{3} S_{3}\left(r^{*}\right)}{6} X^{3}\right] X^{3} Y^{(3)}+\frac{1}{D r_{1, n}}} \\
& \quad+\left[b_{3, n}\left(r^{*}\right)+D b_{3, n}\left(r^{*}\right) X+\frac{D^{2} b_{3, n}\left(r^{*}\right)}{2} X^{2}+\frac{D^{3} b_{3, n}\left(r^{*}\right)}{6} X^{3}\right] X^{2} Y^{\prime \prime} \\
& \quad+\frac{1}{D r_{1, n}}\left[c_{2, n}\left(r^{*}\right) X+D c_{2, n}\left(r^{*}\right) X^{2}+\frac{D^{2} c_{2, n}\left(r^{*}\right)}{2} X^{3}\right] X Y^{\prime} \\
& \quad+\frac{1}{D r_{1, n}}\left[d_{1, n}\left(r^{*}\right) X^{2}+D d_{1, n}\left(r^{*}\right) X^{3}\right] Y=0 .
\end{aligned}
$$

Then

$$
\begin{aligned}
f_{0}(\rho)= & \rho(\rho-1)(\rho-2) S_{3}\left(r^{*}\right)+\rho(\rho-1) \frac{b_{3, n}\left(r^{*}\right)}{D r_{1, n}} \\
f_{1}(\rho)= & \rho(\rho-1)(\rho-2) D S_{3}\left(r^{*}\right)+\rho(\rho-1) \frac{D b_{3, n}\left(r^{*}\right)}{D r_{1, n}}+\rho \frac{c_{2, n}\left(r^{*}\right)}{D r_{1, n}} \\
f_{2}(\rho)= & \rho(\rho-1)(\rho-2) \frac{D^{2} S_{3}\left(r^{*}\right)}{2}+\rho(\rho-1) \frac{D^{2} b_{3, n}\left(r^{*}\right)}{2 D r_{1, n}} \\
& +\rho \frac{D c_{2, n}\left(r^{*}\right)}{D r_{1, n}}+\frac{d_{1, n}(x)}{D r_{1, n}} \\
f_{3}(\rho)= & \rho(\rho-1)(\rho-2) \frac{D^{3} S_{3}\left(r^{*}\right)}{6}+\rho(\rho-1) \frac{D^{2} b_{3, n}\left(r^{*}\right)}{6 D r_{1, n}} \\
& +\rho \frac{D^{2} c_{2, n}\left(r^{*}\right)}{2 D r_{1, n}}+\frac{D d_{1, n}(x)}{D r_{1, n}}
\end{aligned}
$$

Therefore, the indicial equation relative to $x=r^{*}$ is

$$
f_{0}(\rho)=\rho(\rho-1)\left[(\rho-2) S_{3}\left(r^{*}\right)+\frac{b_{3, n}\left(r^{*}\right)}{D r_{1, n}}\right]=\rho(\rho-1)(\rho-3) S_{3}\left(r^{*}\right)=0
$$

and consequently, the exponents of Frobenius are

$$
\rho_{0}=1, \rho_{1}=2, \quad \text { and } \quad \rho_{2}=3 .
$$

Since

$$
\rho_{1}-\rho_{2}=1 \quad \text { and } \quad \rho_{0}-\rho_{2}=3
$$

the necessary and sufficient conditions are that

$$
F_{1}(0)=0 ; \quad F_{3}(0)=0 ;\left.\quad \frac{\partial F_{3}}{\partial \rho}\right|_{\rho=0}=0 .
$$

We have

$$
F_{1}(0)=f_{1}(0)=0,
$$

and

$$
\begin{aligned}
F_{3}(\rho)= & f_{1}(\rho) f_{1}(\rho+1) f_{1}(\rho+2)+f_{0}(\rho+1) f_{0}(\rho+2) f_{3}(\rho) \\
& -f_{0}(\rho+1) f_{1}(\rho+2) f_{2}(\rho)-f_{2}(\rho+1) f_{0}(\rho) f_{1}(\rho) .
\end{aligned}
$$

Thus $F_{3}(\rho)=0$ because $f_{1}(0)=f_{0}(1)=0$, and

$$
\left.\frac{\partial F_{3}}{\partial \rho}\right|_{\rho=0}=f_{1}^{\prime}(0)\left[f_{1}(1) f_{1}(2)-f_{2}(1) f_{0}(2)\right],
$$

because $f_{1}(0)=f_{0}(1)=f_{0}^{\prime}(1)=0$.
Since

$$
\begin{aligned}
f_{1}(1) f_{1}(2)-f_{2}(1) f_{0}(2)= & 2\left\{\frac{c_{2, n}\left(r^{*}\right)}{\left[D r_{1, n}\right]^{2}}\left[D b_{3, n}\left(r^{*}\right)+c_{2, n}\left(r^{*}\right)\right]\right. \\
& \left.-\frac{b_{3, n}\left(r^{*}\right)}{\left[D r_{1, n}\right]^{2}}\left[D c_{2, n}\left(r^{*}\right)+d_{1, n}(x)\right]\right\}=0,
\end{aligned}
$$

we have

$$
\left.\frac{\partial F_{3}}{\partial \rho}\right|_{\rho=0}=0 .
$$

Remarks. (a) This result constitutes an extension of Hahn's theory [10].
(b) The solution of (5.15) is analytic at $x=r^{*}$ and can be written in the form

$$
\begin{equation*}
Y(x)=x^{\rho} \sum_{k \geqslant 0} g_{k} x^{k}, \tag{5.17}
\end{equation*}
$$

where the coefficients g_{k} satisfy the following recurrence relations:

$$
\left.\begin{array}{l}
g_{0} f_{0}(\rho)=0 \\
g_{1} f_{0}(\rho+1)+g_{0} f_{1}(\rho)=0 \\
g_{2} f_{0}(\rho+2)+g_{1} f_{1}(\rho+1)+g_{0} f_{2}(\rho)=0 \tag{5.18}\\
g_{m}(\rho+m)+g_{m-1} f_{1}(\rho+m-1)+g_{m-2} f_{2}(\rho+m-2) \\
\quad+g_{m-3} f_{3}(\rho+m-3)=0, \quad m \geqslant 3 .
\end{array}\right\}
$$

6. STUDY OF THE PARTICULAR CASE WHEN $\gamma=0$

Theorem 6.1. When $\gamma=0$ (i.e., the sequence $\left\{B_{n}^{\alpha}\right\}_{n \geqslant 0}$ is 2-symmetric), the differential equation (5.15) becomes a differential equation of a hypergeometric type, where the solutions are hypergeometric functions ${ }_{3} F_{2}$.

Proof. It is straightforward to show that when $\gamma=0$, Eq. (5.15) can be written as

$$
\begin{align*}
& \left(27 \delta-4 x^{3}\right) Y^{(3)}-6(2 \alpha+3) x^{2} Y^{\prime \prime}+[3 n(n+2 \alpha+1)-(3 \alpha+2)(3 \alpha+5)] x Y^{\prime} \\
& \quad+n(n+3 \alpha)(n+3 \alpha+3) Y=0 \tag{6.1}
\end{align*}
$$

By changing the variable $4 x^{3}=27 \delta X$ and putting $X(d / d X)=\theta$, Eq. (6.1) can be written in the form

$$
\left[\theta\left(\theta-\frac{1}{3}\right)\left(\theta-\frac{2}{3}\right)-X\left(\theta-\frac{n}{3}\right)\left(\theta+\frac{n}{6}+\frac{\alpha}{2}\right)\left(\theta+\frac{n}{6}+\frac{\alpha+1}{2}\right)\right] Y=0
$$

which is a hypergeometric differential equation, with solutions

$$
\begin{align*}
& Y_{1}(x)=\text { constant }_{3} F_{2}\left(-\frac{n}{3}, \frac{n}{6}+\frac{\alpha}{2}, \frac{n}{6}+\frac{\alpha+1}{2} ; \frac{1}{3}, \frac{2}{3} ; X\right) \tag{6.2}\\
& Y_{2}(x)=\text { constant } X_{3}^{1 / 3} F_{2}\left(-\frac{n-1}{3}, \frac{n}{6}+\frac{\alpha}{2}+\frac{1}{3}, \frac{n}{6}+\frac{\alpha+1}{2}+\frac{1}{3} ; \frac{2}{3}, \frac{4}{3} ; X\right) \tag{6.3}
\end{align*}
$$

and

$$
\begin{equation*}
Y_{3}(x)=\text { constant } X^{2 / 3}{ }_{3} F_{2}\left(-\frac{n-2}{3}, \frac{n}{6}+\frac{\alpha}{2}+\frac{2}{3}, \frac{n}{6}+\frac{\alpha+1}{2}+\frac{2}{3} ; \frac{4}{3}, \frac{5}{3} ; X\right) . \tag{6.4}
\end{equation*}
$$

Remarks. (a) Note that

$$
\left.\begin{array}{l}
Y_{1}(x)=B_{3 n}^{\alpha}(x)=\sum_{k=0}^{n}(-1)^{n-k} \frac{[\alpha]_{n+2 k} \delta^{n-k}}{(3 k)!(n-k)!} x^{3 k}, \\
Y_{2}(x)=B_{3 n+1}^{\alpha}(x)=x \sum_{k=0}^{n}(-1)^{n-k} \frac{[\alpha]_{n+2 k+1} \delta^{n-k}}{(3 k+1)!(n-k)!} x^{3 k}, \tag{6.5}\\
Y_{3}(x)=B_{3 n+2}^{\alpha}(x)=x^{2} \sum_{k=0}^{n}(-1)^{n-k} \frac{[\alpha]_{n+2 k+2} \delta^{n-k}}{(3 k+2)!(n-k)!} x^{3 k},
\end{array}\right\}
$$

with

$$
\left.\begin{array}{l}
{[\alpha]_{n}=\alpha(\alpha-1) \cdots(\alpha+1-n), \quad n \geqslant 1 ;} \\
{[\alpha]_{0}=1 .}
\end{array}\right\}
$$

This gives us an explicit form of the polynomials $B_{n}^{\alpha}(x)$, which may be written in the form

$$
\begin{equation*}
B_{n}^{\alpha}(x)=\sum_{k=0}^{[n / 3]}(-1)^{k} \frac{[\alpha]_{n-2 k} \delta^{k}}{(k)!(n-3 k)!} x^{n-3 k} . \tag{6.6}
\end{equation*}
$$

(b) If we put

$$
\begin{align*}
& B_{3 n}^{\alpha}(x)=D_{n}^{\alpha}\left(x^{3}\right), \\
& B_{3 n+1}^{\alpha}(x)=x E_{n}^{\alpha}\left(x^{3}\right), \quad \text { and } \quad B_{3 n+2}^{\alpha}(x)=x^{2} F_{n}^{\alpha}\left(x^{3}\right), \tag{6.7}
\end{align*}
$$

it is easy to show that each of the sequences $\left\{D_{n}^{\alpha}\right\}_{n \geqslant 0},\left\{E_{n}^{\alpha}\right\}_{n \geqslant 0}$, and $\left\{F_{n}^{\alpha}\right\}_{n \geqslant 0}$ also satisfies a recurrence relation of order 3 .

ACKNOWLEDGMENT

The author thanks Dr A. Magnus for useful suggestions and comments.

REFERENCES

1. A. Boukhemis and P. Maroni, Une caractérisation des polynômes strictement $1 / p$ orthogonaux de type Sheffer, étude du cas $p=2$, J. Approx. Theory 54 (1988), 67-91.
2. M. G. De Bruin, "Simultaneous Padé Approximation and Orthogonality," Lectures Notes in Mathematics, Vol. 1171, Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, 1985.
3. C. Brezinski, "Biorthogonality and Its Applications to Numerical Analysis," Dekker, New York/Basel/Hong Kong, 1992.
4. J. Devisme, Sur l'équation de M. Pierre Humbert, Ann. Fac. Sci. Toulouse 25 (1933), 143-238.
5. K. Douak and P. Maroni, Les polynômes orthogonaux "classiques" de dimension deux, Analysis 12 (1992), 71-107.
6. K. Douak and P. Maroni, Une caractérisation des polynômes d-orthogonaux "classiques", J. Appprox. Theory 82 (1995), 177-204.
7. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, "Higher Transcendental Functions," Vol. 3, McGraw-Hill, London/New York/Toronto, 1955.
8. E. L. Ince, "Ordinary Differential Equations," Dover, New York, 1956.
9. J. Van Iseghem, "Approximants de Padé Vectoriels," Thèse d'état, Univ. des Sciences et Techniques de Lille-Flandres-Artois, 1987.
10. W. Hahn, Über lineare Differentialgleichungen, deren Lösungen einer Rekursionsformel genügen, Math. Nachr. 4 (1951), 1-11.
11. W. Hahn, Über die jacobischen Polynome und zwei verwandte Polynomklassen, Math. Z. 39 (1935), 634-638.
12. H. L. Krall, On derivatives of orthogonal polynomials, I, Bull. Amer. Soc. 42 (1936), 423-428.
13. P. Maroni, L'orthogonalité et les récurrences de polynômes d'ordre supérieur à deux, Ann. Fac. Sci. Toulouse 10, No. 1 (1989), 105-139.
14. P. Maroni, Two dimensional orthogonal polynomials, their associated sets and the co-recursive sets, Numer. Algorithms 3 (1992), 299-312.
15. P. Maroni, L'orthogonalité non régulière et les suites de polynômes orthogonaux semiclassiques, Publ. Lab. Anal. Univ. P. \& M. Curie, CNRS, No. 86005, 1986, Paris.
