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We construct a sequence of d-dimensional classical orthogonal polynomials
(d>2) that generalize the Gegenbauer polynomials. The case d=2 is fully
studied.  © 1997 Academic Press

1. INTRODUCTION

We give in this paper a partial answer to the problem which consists of
the explicit determination of a sequence of polynomials verifying a
recurrence relation of order d+ 1 (d=2).

The problem as it is posed constitutes a generalization of the sequences
of classical polynomials, which verify this property (Hermite, Laguerre,
Jacobi, and Bessel) when d=1 [11, 12].

The relation between the polynomial recurrence relation of order d+ 1
and the notion of orthogonality of dimension d has been established in [9].
The fundamental result in the study of the vectorial Padé approximants of
d simultaneous formal sequences is:

“A sequence of polynomials is orthogonal of dimension d iff it verifies a
recurrence relation of order d+ 1.”

In the paper [1], we have shown the existence of two sequences of
“classical” polynomials of dimension 2. These sequences are defined from a
Sheffer type generating function.

Part of this work consists of constructing from a generating function a
sequence of polynomials verifying a recurrence relation of order d + 1, where
the successive derivatives of order k (k=1, 2, ...) verify also a recurrence
relation of order d+ 1. This sequence generalizes the Gegenbauer polyno-
mials. On the other hand, our aim is to study the properties of this sequence
in the particular case when d=2.
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436 AMMAR BOUKHEMIS
2. THE d-ORTHOGONAL POLYNOMIALS

DEFINITION 2.1 [2, 3,9, 13, 14]. Let I'=(I'", I'?,.., I'?)" be a d-linear
form defined on the vector space of polynomials on C. A sequence {P,}, -
is said to be a d-dimensional orthogonal polynomial sequence, or simply
d-orthogonal with respect to 7, if it fulfills

(x"P,(x)) =0, n=md+ o, m>°} (2.1)

FG(X"1Pmd+071(X))7éO, mZOa

for each 1 <o <d.

Remark. (a) In this case, the d-dimensional functional I is called
regular.

(b) If{P,},-ois a d-orthogonal polynomial sequence, then its poly-
nomials are exactly of degree n and can hence be normalized; thus the
uniqueness follows.

DEFINITION 2.2 [13]. Let {P,},-, be a sequence of monic polyno-
mials. The sequence of linear forms {%,}, -, defined by

%[(P}’l) = <$’l’ Pm> = 5}7, m> n’ m > O (2'2)

is called the dual sequence of {P,},-,, where {, ) denotes the duality
bracket between the vector space of polynomials £ and its dual Z'.

Lemma 2.1 [13,15]. Let fe 2" and q be a positive integer. [ satisfies
fP,)#0  and  f(P,)=0, n=gq (2.3)
iff there exist 4,€C, for 0<v<q—1, with A, | #0, such that
qg—1
=Y 1.9, (24)
v=0
Remark. From the above lemma we deduce
og—1
r'=> 24, with A7 ,#0 for 1<o<d, (2.5)
v=0

or equivalently

L= &re, with &7#0 for 0<v<d—1. (2.6)
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COROLLARY 2.1. If {P,},~, is a d-orthogonal polynomial sequence with

respect to L =(%y, L, ... L)', it is therefore d-orthogonal with respect
to '=(I'", I'? ... I'"), and reciprocally.

ProPOSITION 2.1 [9,13]. For each sequence {P,},-,, the following
propositions are equivalent:

(a) The sequence {P,},-, is d-orthogonal with respect to ¥ =
(%9 9% 5 *vey z{fly'

(b) The sequence {P,} -, verifies a recurrence relation of order d+ 1,

Poiai1(X)=(x—=Lia) Poialx Z ym+ldivvpm+d717v(x) m =0,
- (2.7)

with the initial conditions
Py(x)=1; Py(x)=x—Po;
m—2 (2.8)
Pm(x) = (X _ﬁmfl) mel(x) - Z ymfll:‘LPm 2,‘,(X), 2 sm< d
and the regularity conditions

Y1 720, m=0.

Remark. This result constitutes a generalization of Shohat-Favard’s
theorem.

DEFINITION 2.3 [5,6]. The d-orthogonal sequence {P,},-, is called
“classical” if it satisfies Hahn’s property; that is, the sequence {DP,}, -,
(D =d/dx) is also d-orthogonal.

ProPOSITION 2.2.[13]. If {2}, -, is the dual sequence of {DP,} -,
then

DY =—-%,,,, n=0, (2.9)
where

(DZ,p(x))=~LZ,p'(x)), Vpe?.
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3. GENERATING FUNCTIONS AND POLYNOMIAL
RECURRENCE RELATIONS

DermNiTION 3.1. A function @(x, ¢) that can be written as a power series
in the variable is said to be a generating function for a sequence {P,},~,
if it can be represented in the form

D(x,t)= ) ¢,P,(x)1", c, 70, n=0.

n=0

Lemma 3.1. Let {B,},-, be a sequence of monic polynomials that
satisfies a recurrence relation of order d+ 1 (d =2), with constant coefficients

J
By(x)=1; B,(x) =XB_/71(X) - z kajfk(x)s 1<j<d,;

k=1

d+1
Bn+d+1(x):'XBn+d(x)_ Z kat1+d+17k(x)9 1’120,
k=1
(3.1)
with y,., #0.
If G(x, t) is a generating function of the sequence {B,},~,,
Gx,)= Y By(x)r", (32)
n=0
then
d+1 —1
G(x, t)z(l —xt+ Y yktk> . (3.3)
k=1

Proof. Itis sufficient to multiply (3.1) by ', and then to sum overn. |

Let us now consider the generating function of the sequence of polyno-
mials denoted by {B%},-,. It is defined by

d+1 —a
G, (x, t)=<1 —xt+ ) ykt"> =Y Bix)t", for n#-—1, #2,...
k=1

n=0

(34)

Remark. The polynomials B%(x) are more general than those of
Legendre and Gegenbauer and those studied by Humbert, Pincherle, and
Devisme [ 7].
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LemMmA 3.2. The generating function G (x,t) defined by (3.4) satisfies
the following relations:

d+1 aG d+1
<1—xt+ > y,ctk>at°‘=<x<x— > ky,ct"> G (x, 1), (3.5)

k=1 k=1
d+1 aG
<1 —xt+ Y ykt"> %= atG,(x, 1), (3.6)
k=1 x
and
oG, d+l - 0G,
t 3 <x— Y kyt > e (3.7)

LemMa 3.3, The sequence {B%},-, satisfies the following recurrence
relation of order d+ 1:

Bi(x)=1; 3\

JBi(x)=(j—1+a) xB} ,(x)— (J k + ko) 7 Bf i (x),

TTM\.

1</ <d, >
(n+1+d) n+tl+l(x)
d+1
=(n+d+a)xB, (x)— Y, (n+1+d+ka—k)y B, . 1 (x),
k=1
n=0. j

(3.8)

Proof. Tt is sufficient to replace 0G, /0t and G, in (3.5) by their respec-
tive values, and then we identify the coefficients of power of 7. ||

LEMMA 3.4. The sequence {B%}, -, satisfies the following relations:

J
“B;C(x)zDB?Jrl(x) XDBO( Z kDB+1_,(x)
1<j<d,;
d+1
O‘B:+d+l(x)=DBZ+d+2(x) XDBn+d+1 )+Z ykDBZ+d+2—k(x)>
k=1
n=0,

(3.9)
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and
kB?(x) =xDB¥(x Z kyx DB, | _ (X)),
k=1
I<j<d;
d+1
(n+d+1) By, ,,(x)=xDBj , (x)— Z kyx DB}, 4 n_i(X),

k=1
n=0.

(3.10)

Proof. 1t is sufficient to replace 0G,/0x and G, in (3.6) by their respec-
tive values, and then we identify the coefficients of power of ¢ to obtain
(3.9).

Similarly, we obtain (3.10) by replacing 0G,/0x and 0G,/0t in (3.7) by
their respective values. |

COROLLARY 3.1. Differentiating the relations (3.9) and (3.10) m times
(m<n), and letting D" =d"/dx", we obtain the following relations for
0<m<n, withn=0:

(actm) DBy, 1(X)
d+1

Dm+lBZ+d+2( )— XDm+lBZ+d+l (x)+ Z Vi Dm+lBZ+d+2 (X)),
P

(3.11)
(n+d+1—m)D"Bj} ., (X)
d+1

XD”I+IBZ+4+2 )_ Z kykD”z+lB:+d+2—k(x)- (3-12)
k=1

THEOREM 3.1.  The sequence of derivatives {D”*'B%},~,, (m<n) also
satisfies a recurrence relation of order d+1:

(n+d+1—m)D"+'Bx_ . ,(x)

=(I’l+d+1+“)XDm+1BZ+d+l(x)
d+1
— > [n+d+1+ka—(k—=1)m]y D"*'By, ., (),

k=1

0<m<n; nz=0. (3.13)

Proof. We cancel DB, ,,, (x) by taking a linear combination of
(3.11) and (3.12). 1

Remark. 1t follows that the sequence {B}},-, (a# —1, # =2, ..) is a
sequence of d-dimensional classical orthogonal polynomials.
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4. PROPERTIES OF {B%},.,

Remarks. (a)
formula, {B%},-, can be written in the form

From the generating function (3.4) and Cauchy’s integral

B(x) 1 f]g dt
X)=—
" 2ni I TN —xt+ 34y )
1 dt
= . 0L n 11 o’ (41)
2miyg ﬁ; ! Hliiﬁ [1—1x(x)]

where 7,(x), 75(X),..., T4, 1(x) are the (d+ 1) zeros of

d+1
l—xt+ ) 7,75 =0,

k=1

(4.2)

with |7,(x)] < [72(X)] < .. <745 1(X)].
(b) We can see that B(x) behaves like the nth power of 1/7,(x).

LEMMA 4.1. The recurrence relation (3.8) can be written in the form
xb=Mb, (43)
where
By
b=| Bi(x)
and
1 -
7 — 0 0
o
2a 2 0
el V2 71 1
3a 200+ 1 3
M= <x+2})3 %2 72 71 %t 2
(d+1)x do+1 (d=1)o+2
td Va+1 OH_thl wtd Ya—1
0
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PropPoSITION 4.1.  The moments of %, are given by
Z(x") =M, n=0, (4.4)
where M , is the element of the first line and the (v + 1)th column of M".
Proof. Multiplying the relation (4.3) (n— 1) times by M, we obtain
x"b=M"b.

In particular

X_ZMOJ _/()

j=0

Applying now %, we get

=Y M, %(Bi(x)=M; . I

j=0

LemMA 4.2.  The forms {¥%,}, -, satisfy the relation

v, _(p) 3] Ly ii—1(p)
LAY S04 (k Ve ————— =0, Vpe.
a+v—1 —(xt) g‘ +v) a+v+k—1 pe
(4.5)
Proof. We have
xn+1b::“1n+lh
In particular
Z M”“B“ Z ngxB“( X).
j=0 j=0
Applying now %,, we get
d+1 ka—+v
g n+1 :Mn+l_ Mn n
(x"0) 0, v oc—i—v—l 0”71+Za+v+k IV 0.0+k—1"
That is,
v d+1 feo 4y
g’ n+1 :731 - »g' _ n’
(X ) aty_1 v—(x™) Z:oc+v+k lh k- 1(x")

and by the linearity of %,, this relation is true for any polynomial p; thus
(4.5) follows. |
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LemMMA 4.5. Let {2}, ., be the dual sequence of {DB, . \},-; then

Z(p) & w(p)
o Z (j—1)7y, P Vpe?. (4.6)

Z(p)=Z(p)=

Proof. Adding term by term the relations (3.9) and (3.10), we obtain

min(k, d+1)
(a+k) Bi(x)=DB; \(x)— Y (j=1)yDBi ,_,(x), n>0.

Jj=2

Applying now Z,, we get

- (S]( min(k, d+1) 5]( o
L(B,.(x))= Y j—1)y, —2
B =Y U
Thus
a1 L, ..
7, 1)y D
vl oc+v jg J )y"oc+v+j

and by the linearity of %, and .Z, this relation is true for any polynomial
p; thus (4.6) follows. |

THEOREM 4.1. The forms &, /(o4 v) have an integral representation in
the form

g Xy X 15 (x)
”(f)zj w(x) £(x) dxzj j rK(x, 1) f(x)dtdx, (47
o+v X x; Yt
with
d+1 a—1
K(x, t)=conslant<1 —xt+ Y ykl">
k=1
d+1
=constant || [t—t,(x)]*"", if a>0.
k=1
That is,
t(x) d+1
wv(x)=f ¢ ﬂ [1—1,(x)]* " dt, (4.8)
nx) =

where t,(x)=1,(x), t2(x)=71,(x), ... and x, and x, are two values such that
71(X) = 75(X).
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Proof. From (4.5) we have

Xy ply(X) d+1
jzjz rK(x, t){:—(oc+v)x+ Y (ka+v) o~ | de f(x) dx =0,
xp Y (x) k=1
This implies that
%2 () 8/8t [£'(1—xt+ 3025 pet” )]
‘ dt f(x) dx =0.
) R ) s ey T ) d

Hence, it is sufficient to take

d+1 o—1
K(x, l)=h(x)<1—xt+ > ykt"> ,

k=1
and to have

d+1
l—xt+ ) y.05=0, for t=t,(x)and t=15(x), (ifa>0).
k=1
Thus the limits of integration are ,(x)=17,(x) and ¢,(x) = 7,(x); in addi-
tion x, and x, are two values such that 7,(x) = 17,(x).
To determine /(x), let W, , be a primitive of w,, ;; then we have

L=t D) [Ty (0) fx) dx

X1

~as ) [ W) £ d,

*1
and from (4.6), we get

—(v+oa+1) W, (x)
d=1

= 1/Vﬁ(x) - Z (]_ 1) yjujv+j(x)
j=2
1(x) d+1 ) a—1 d+1 )
=h(x)j l”<1—xt+ y yjzf> {1— Y (j—l)yjtf} dr
1) j=1 j=2

ty(x) d+1 ) oa—1
= —h(x)f et {t‘l (1 —xt+ ), yjt-’”

t(x)

0 d+1
61{ <l—xt+ Y yjtfﬂ dr

Jj=1

1 15(x) d+1 RE
=Mh(x)f z‘[l—xﬂr > yjt'} dt.
(x)

« j=1
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Differentiating the last expression with respect to x, we obtain (4.8) with
h(x)=constant. |

Remark. When d=1, we obtain
wo(x) = constant[ £5(x) — t,(x)]>* 7",

which is the density function of Gegenbauer’s polynomials.

5. STUDY OF THE CASE d=2

COROLLARY 5.1. If we put y,=p, y,=y, and yy=20, we obtain from
relations (3.4), (3.8), and (3.13), with d=2,

Gx,t)=[1—(x—pB)t+yr*+>]

=Y BXx)t",  for n#-—1, #-2,. (5.1)

n=0

Bix)=1:  Bi(x)=a(x—p)
B3(x) =3 [(a+ D)(x— B> =27];

(n+3) B 5(x)=(n+2+a)(x =) By o(x) —(n+1+42a) yB;  (x)
—(n+ 3a) 0BY(x), n=0

(5.2)
and
(n+3)D"*'By J(x)=(n+3+a)(x—p) D" *'B; 5(x)
—(n+3+2a+m)yD" B (x)
—(n+3+3a+2m) D"+ 'Bx_ (),
0<m<n; n=0. (5.3)

COROLLARY 5.2. Let

[« ]n DB}, \(x)

Bix) =t Bx)  and  Qifx) ="

>

where [a],=a(a+1)---(a+n—1),n=1, and [a],=1.
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Then the sequences {B*}, ., and {Q%}, -, are two monic sequence. Then
satisfy, respectively, the following recurrence relations:

o))
O R
Il

o]
-
R
Il

x—=p;  Bix)=(x—p)~ ;

o+ 1

~ ~ 2 1+2 ~
By )= (x ) By o) - I (54)

(n+1)(n+2)(n+3a) .
_(n+°‘)(”+l +o)(n+2+a) 0B}(x), n=0

and

(n+2)(n+3+2a)
(n+2+a)(n+3+a)

Qn+3(x):(x_ﬁ) Qn+2(x)_ an+l(x)

(n+1)(n+2)(n+3+30)
S (n+l+o)(n+2+a)(n+3+a) 00,(x),  n=0. (53

Remarks. (a) The sequence {B%}, ., corresponds to the case A in [5]
(which is not 2-symmetric when =0, because it can be concluded that
721 #0), and from this, the conclusions concerning this case are not
complete.

(b) The relations of Section 3 are between the polynomials of the
same index. If we omit this restriction, we can find other sample relations
that generalize the classical identities of Gegenbauer’s polynomials. Note,
for example,

D"BYx)=(—1)"[a],, B2*"(x); (5.6)
Q5(x) =B (x); (5.7)

Do+ }’l' a P : .

B*T(x)= T D*B%, (x), if aeN; (5.8)

~ 2(n+2)

~:x+l( )

Bl () =(x=p) Byl — = 0B

_ 3(m+1D)(n+2) il
(n+1+<x)(n+2+oc)5B” (%); (59)
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and

~ 1

B 9=y 2 20— g7 =) B

(n+1D)(n+2)

_ 2 §a+l
D x— ) +201 B

(424 3a)(x—B) B olx >>},
n>0. (5.10)

PrOPOSITION 5.1.  If the equation
Z(x,7)=1—(x—p) t+yr* + 61> =0. (5.11)
has a double root 7,(x)=1,(x), then x must satisfy the equation
P(x)=—4d(x—B)> —y*(x — B)> + 18yd(x — ) + 49> + 276> = 0. (5.12)
Proof. We have

0Z _
or
Zx,t)=1—(x—p)t+y*+ 6> =0.

—(x—=B)+2y1+ 3517 =0,

Thus 7= (96 + (x— B)7)/2[36(x — B) + 7], and if we replace t by this
value, we obtain (5.12). ||

ProrosiTION 5.2. Ifae N (a>0), then

ok 1)

x [11(x) = t3(x) 17 T F [15(x) — £1(x) 1°

Wo(X) =

(7a1)0( [lz(x) ]2oc 1 Z

(o)

x [p(x) = 15(x) 17 [£2(x) = t3(x)]* 71, (5.13)

—1)* a—1 | a—1 )
o T A Y (1
j=0 | k=;
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= <ocfl>

w0 = (=17 [6(x) = 6,017 Y 22—
k=0
<2oc+k>
X [14(x) = 13() 1% [ea(x) = 11(x) 1* [+ k) 25(x) + oty (x) ]
(5.14)

and

Proof. We have

vvo(x)zftz(X) [1— ()] [t —1(x) ] [ —t3(x) ] Hdt

t(x)

o—1 u71“71 k
—fw [l ()] [1 = 1x(x) ] Eo<a_1>

X[t —1,(x)] [14(x) = t5(x)]* "~ * dt
= z <a_1> f(x) = ()]

ijzu [1—0,(x) ] ¥ [t —1y(x)]*
1 (x)

*(ai1)

x [11(x) = 15(0) 171 7F [15(x) — £,(x) 1%

-l -y

The relation (5.14) can be obtained similarly, by writting

wl(x)=f:2((:) {[t=0(0) 1+ () [ —1(x) 1 [ = 12(x0) ]
x[t—t5(x)]* "dt. |

THEOREM 5.1.  The sequence of polynomials { B3}, satisfies the fol-
lowing third-order differential equation,

rlﬂn(x) S}(x) Y(3) +b3, n(x) Y” + CZ,n(x) Y/ +dl,n(x) YZO’ (515)
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with

S3(x) =3P(x), A
ria(x)=303n+30+1) pox +2np> +27(n+ 1 4 3a) 6,

200+ 3
b3,n(x) = 5 DS;5(x) Vl,n(x) _D”l,nss(x)a

Con(X)=3{[(n—2—=30)(n+5+3) + 2n(n + 3t)] ox >
+(n—=1)(n+142a) ) ry_(x)
—[6(n—2—3a)dx*>+(n—3—60a) y’x —9(n—1) y5] Dr,_,,

d, (x)=n(n+30)[3(n+3+3a) or,_,(x)—(60x+ 2y?%) Dry .1, J
(5.16)

and the substitution x +— x + f.

Proof. Differentiating the relation (5.2) with n replaced by n—2, we
have

(R1) (n+1)DB%, ,—(n+a)xDB*+(n+20—1) yDB%_,

n+1
+(n+30—2)0DB: _,—(n+a) B:=0.

o

By eliminating DBY _,, using the relations (R1) and (3.11), in which we
replace m by 0 and change n to n— 3, we obtain

(R2) 3DB”

n+1

—(n+a) B*—2xDB*+ yDB* _, =0.

In the same way, eliminating DB, , | by taking a linear combination of
relation (3.11) and (R2), we get

(R3) 3(n+3) B*,,—2(x2—3y) DB*— (n+3a) xB*+ (yx + 9) DB*_, =0,

and then differentiating (R3) and eliminating DB% we obtain

n+1>°
(R4) —2(x*—3y) D’B*+ (n—3a—2) xDB% + n(n + 3a) B*
—nyDB%_ |+ (yx+90) D*B%_,=0.

Using (R2) and (3.11), we eliminate DB | and replace n by n—1; we
obtain

(R5) (yx+99) DB*—nyB>—2(35x +y*) DB, —3(n+30—1) 6B

n—1

=0.
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Differentiating (R5) and eliminating D*B% _, using (R4), we have
(R6) S5(x) D*B*+[2(n—2 —30)(36x* + y*x) — (n—1)(yx + 96)y] DB*
+2n(n + 3a)(30x + %) B: —ry_,(x) DB _, =0.

Finally we differentiate (R6) and eliminate D*B*_, and then DB* | by
combining it with relations (R4) and (R6) to obtain Eq. (5.15). |

THEOREM 5.2. The zero of r, (x) is an apparent singularity of the
differential equation (5.15).

Proof. (We use the same notation as that given in [8].) Set X' =x —r¥*,
where r* is the zero of r . (x) (r*=(=2np°+27(n+1+3a)d?)/
3(3n+ 1+ 3a) o). Then Eq. (5.15) can be written in the form

D? * D3S.(r*
{S3(V*)+D53(V*)X+ S;(r )X2+ g(r )Xs} X3y® 4 .
1,n
D? * D3 *
#] b4 Db 4 x4 B oy PR o ey
D? *
+D1 |:C2,n(r*) X+DC2’,7(V*)X2+C2’2”(’.)X3:| XY/
rl,n
+ 1 [dl }I(r*)X2+Dd1 n(r*)X3:| Y:O
Drl,n ’ ’
Then
bs (1)
fop)=plp—1)p—2) S5(r*)+p(p—1) ;,)r , \
1,n
Db, (r* ¢y (F*
filp)=p(p—1)(p—=2)DS5(r*) +p(p—1) Dl( )+p 2l )’
rl,n Drl,n
DZS%(V*) D2b3 (r*)
flp)=plp—1)(p—-2) > +plp—1) 2Dr,. >
De, (r*) | dy u(X)
+p Dr,, +Dr1?n’
D3SS(V*) D2b3’n(r*)
f3(p)—p(p—l)(p—z)Ter(p_l)Trm

D2€2,n(r*) Ddl,n(x)
+p .
2Drl,n Drl,n }
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Therefore, the indicial equation relative to x =r* is

b3n *
Sop) =p(p=1)] (p=2) 830 + 252 (1) —3) 5304 =0,

and consequently, the exponents of Frobenius are
po=1,p,=2, and pr=3.
Since
pr—pa=1 and Po—p2=3,
the necessary and sufficient conditions are that

oF
73 =0.

F,(0)=0; F5(0)=0; =
ap p=0

We have
F\(0)=/,(0)=0,
and
Fy(p)=filp) filp+1) filp+2)+1o(p+1) fo(p +2) f3(p)
—folp+1) filp+2) fo(p)=fop +1) fo(p) f(p).
Thus Fy(p) =0 because f,(0) =f,(1) =0, and

OF,

2 =AOLAM) £1(2) =£(1) f6(2)],

p=0

because f1(0) = fo(1) =fo(1) =0.

Since

€2, ,(1%)

A A2 =) fol2) =2 {[m]

[Dbs ,(r*) + ¢, ,(r*)]

b3,n(r*)

“or T [De, (1) +d1,n(x)]}= 0,
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we have
ap p=0
Remarks. (a) This result constitutes an extension of Hahn’s theory
[10].

(b) The solution of (5.15) is analytic at x =r* and can be written in
the form

Y(x)=x" Y g, (517)

k=0

where the coefficients g, satisfy the following recurrence relations:

gofolp)=0
glfo(ﬂ+ 1)+gof1(p):0
& folp+2)+g filp+1)+g0 fo(p)=0 (5.18)

gm(p—i_m)—i_gmflfl(p—i_m_1)+gmf2f2(p+m_2)
+&m_3falpt+m—3)=0, mz=3.

6. STUDY OF THE PARTICULAR CASE WHEN y=0

THEOREM 6.1. When y=0 (i.e., the sequence {B:},-, is 2-symmetric),
the differential equation (5.15) becomes a differential equation of a hyper-
geometric type, where the solutions are hypergeometric functions 5 F,.

Proof. 1Tt is straightforward to show that when y =0, Eq. (5.15) can be
written as

(276 —4x%) YO — 620+ 3) x2Y" + [3n(n + 20+ 1) — (3 +2)(3x + 5)] x Y’
+n(n+3a)(n+3a+3) Y=0. (6.1)

By changing the variable 4x* =275X and putting X(d/dX) =0, Eq. (6.1)
can be written in the form

L O GO e I
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which is a hypergeometric differential equation, with solutions

nn an atl 12
Yl(x)=c0nstant3Fz<—3,6+2,6+ 5 g g; X> (6.2)
Y,(x) = constant X'/, F nolm e dm ol 124y

A =eomstalt & TR e T T g T T T3y
(6.3)
and
—2n a 2n o+l 245
_ 2/3 n r 2 2" 2.2y
Y;(x) =constant X 3F2< 3 ’6+2+3’6+ > 333 > |
(6.4)
Remarks. (a) Note that
! (2], 20" " 5
Y Boc 71 n—k + 3k
l('x 3}7 Z:: (Sk) ( k)'x s
“ P 2 P T L
a _ n—k n 3k
Yy(x)=B%, (x)=x ) (1) Gkt )l ~ (6.5)

Y(X)ZB“ (x)=x2 Z (_l)n,k [a]n+2k+25n_k x3k
? 3n+2 ~ Bk+2) (n—k)~

with

[a], = —1)---(x+1—n), n>1;}
[a]o=1.

This gives us an explicit form of the polynomials B%(x), which may be
written in the form

(23] c [a]n72kék — 3k
af oy 1k n— 3k
Bio= L D00 (=30 (66)
(b) If we put
B3, (x) =D3(x?),
B3, 1(x)=xE(x?), and B3, o(x)=x?F}(x?), (6.7)

it is easy to show that each of the sequences {D%},-¢, {EZ},~0, and
{F2} .=, also satisfies a recurrence relation of order 3.
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