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We construct a sequence of d-dimensional classical orthogonal polynomials
(d�2) that generalize the Gegenbauer polynomials. The case d=2 is fully
studied. � 1997 Academic Press

1. INTRODUCTION

We give in this paper a partial answer to the problem which consists of
the explicit determination of a sequence of polynomials verifying a
recurrence relation of order d+1 (d�2).

The problem as it is posed constitutes a generalization of the sequences
of classical polynomials, which verify this property (Hermite, Laguerre,
Jacobi, and Bessel) when d=1 [11, 12].

The relation between the polynomial recurrence relation of order d+1
and the notion of orthogonality of dimension d has been established in [9].
The fundamental result in the study of the vectorial Pade� approximants of
d simultaneous formal sequences is:

``A sequence of polynomials is orthogonal of dimension d iff it verifies a
recurrence relation of order d+1.''

In the paper [1], we have shown the existence of two sequences of
``classical'' polynomials of dimension 2. These sequences are defined from a
Sheffer type generating function.

Part of this work consists of constructing from a generating function a
sequence of polynomials verifying a recurrence relation of order d+1, where
the successive derivatives of order k (k=1, 2, ...) verify also a recurrence
relation of order d+1. This sequence generalizes the Gegenbauer polyno-
mials. On the other hand, our aim is to study the properties of this sequence
in the particular case when d=2.
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2. THE d-ORTHOGONAL POLYNOMIALS

Definition 2.1 [2, 3, 9, 13, 14]. Let 1=(1 1, 1 2,..., 1 d )t be a d-linear
form defined on the vector space of polynomials on C. A sequence [Pn]n�0

is said to be a d-dimensional orthogonal polynomial sequence, or simply
d-orthogonal with respect to 1, if it fulfills

1 _(xmPn(x))=0,
1 _(xmPmd+_&1(x)){0,

n�md+_, m�0
m�0, = . (2.1)

for each 1�_�d.

Remark. (a) In this case, the d-dimensional functional 1 is called
regular.

(b) If [Pn]n�0 is a d-orthogonal polynomial sequence, then its poly-
nomials are exactly of degree n and can hence be normalized; thus the
uniqueness follows.

Definition 2.2 [13]. Let [Pn]n�0 be a sequence of monic polyno-
mials. The sequence of linear forms [Ln]n�0 defined by

Ln(Pn)=(Ln , Pm) =$n, m , n, m�0 (2.2)

is called the dual sequence of [Pn]n�0 , where ( , ) denotes the duality
bracket between the vector space of polynomials P and its dual P$.

Lemma 2.1 [13, 15]. Let f # P$ and q be a positive integer. f satisfies

f (Pq&1){0 and f (Pn)=0, n�q (2.3)

iff there exist *& # C, for 0�&�q&1, with *q&1{0, such that

f= :
q&1

&=0

*nL& . (2.4)

Remark. From the above lemma we deduce

1 _= :
_&1

&=0

*_
& L& , with *_

_&1{0 for 1�_�d, (2.5)

or equivalently

L&= :
&

_=1

!&
_ 1 _, with !&

&{0 for 0�&�d&1. (2.6)
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Corollary 2.1. If [Pn]n�0 is a d-orthogonal polynomial sequence with
respect to L=(L0 , L1 , ..., Ld&1)t, it is therefore d-orthogonal with respect
to 1=(1 1, 1 2, ..., 1 d )t, and reciprocally.

Proposition 2.1 [9, 13]. For each sequence [Pn]n�0 , the following
propositions are equivalent:

(a) The sequence [Pn]n�0 is d-orthogonal with respect to L=
(L0 , L1 , ..., Ld&1)t.

(b) The sequence [Pn]n�0 verifies a recurrence relation of order d+1,

Pm+d+1(x)=(x&;m+d ) Pm+d (x)& :
d&1

&=0

#d&1&&
m+d&& Pm+d&1&&(x), m�0,

(2.7)

with the initial conditions

P0(x)=1; P1(x)=x&;0;
(2.8)

Pm(x)=(x&;m&1) Pm&1(x)& :
m&2

&=0

#d&1&&
m&1&&Pm&2&&(x), 2�m�d

and the regularity conditions

#0
m+1{0, m�0.

Remark. This result constitutes a generalization of Shohat�Favard's
theorem.

Definition 2.3 [5, 6]. The d-orthogonal sequence [Pn]n�0 is called
``classical'' if it satisfies Hahn's property; that is, the sequence [DPn]n�0

(D=d�dx) is also d-orthogonal.

Proposition 2.2. [13]. If [L� n]n�0 is the dual sequence of [DPn]n�0 ,
then

DL� n=&Ln+1 , n�0, (2.9)

where

(DL� n , p(x))=&(L� n , p$(x)) , \p # P.
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3. GENERATING FUNCTIONS AND POLYNOMIAL
RECURRENCE RELATIONS

Definition 3.1. A function 8(x, t) that can be written as a power series
in the variable is said to be a generating function for a sequence [Pn]n�0

if it can be represented in the form

8(x, t)= :
n�0

cnPn(x) tn, cn{0, n�0.

Lemma 3.1. Let [Bn]n�0 be a sequence of monic polynomials that
satisfies a recurrence relation of order d+1 (d�2), with constant coefficients

B0(x)=1; Bj (x)=xBj&1(x)& :
j

k=1

#kBj&k(x), 1� j �d ;

=Bn+d+1(x)=xBn+d (x)& :
d+1

k=1

#kBn+d+1&k(x), n�0,

(3.1)

with #d+1{0.
If G(x, t) is a generating function of the sequence [Bn]n�0 ,

G(x, t)= :
n�0

Bn(x) tn, (3.2)

then

G(x, t)=\1&xt+ :
d+1

k=1

#ktk+
&1

. (3.3)

Proof. It is sufficient to multiply (3.1) by tn+1, and then to sum over n. K

Let us now consider the generating function of the sequence of polyno-
mials denoted by [B:

n]n�0. It is defined by

G:(x, t)=\1&xt+ :
d+1

k=1

#ktk+
&:

= :
n�0

B:
n(x) tn, for n{&1, {2, ... .

(3.4)

Remark. The polynomials B:
n(x) are more general than those of

Legendre and Gegenbauer and those studied by Humbert, Pincherle, and
Devisme [7].
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Lemma 3.2. The generating function G:(x, t) defined by (3.4) satisfies
the following relations:

\1&xt+ :
d+1

k=1

#ktk+ �G:

�t
=: \x& :

d+1

k=1

k#k tk+ G:(x, t), (3.5)

\1&xt+ :
d+1

k=1

#ktk+ �G:

�x
=:tG:(x, t), (3.6)

and

t
�G:

�t
=\x& :

d+1

k=1

k#k tk&1+ �G:

�x
. (3.7)

Lemma 3.3. The sequence [B:
n]n�0 satisfies the following recurrence

relation of order d+1:

B:
0(x)=1;

jB:
j (x)=( j&1+:) xB:

j&1(x)& :
j

k=1

( j&k+k:) #k B:
j&k(x),

1� j �d ;

(n+1+d ) B:
n+d+1(x)

=(n+d+:) xB:
n+d (x)& :

d+1

k=1

(n+1+d+k:&k) #k B:
n+d+1&k(x),

n�0.

(3.8)

Proof. It is sufficient to replace �G:��t and G: in (3.5) by their respec-
tive values, and then we identify the coefficients of power of t. K

Lemma 3.4. The sequence [B:
n]n�0 satisfies the following relations:

:B:
j (x)=DB:

j+1(x)&xDB:
j (x)+ :

j

k=1

#kDB:
j+1&k(x),

=1� j�d ;

:B:
n+d+1(x)=DB:

n+d+2(x)&xDB:
n+d+1(x)+ :

d+1

k=1

#kDB:
n+d+2&k(x),

n�0,

(3.9)
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and

kB:
j (x)=xDB:

j (x)& :
j

k=1

k#kDBa
j+1&k(x),

=1� j�d ;

(n+d+1) B:
n+d+1(x)=xDB:

n+d+1(x)& :
d+1

k=1

k#kDB:
n+d+2&k(x),

n�0.

(3.10)

Proof. It is sufficient to replace �G:��x and G: in (3.6) by their respec-
tive values, and then we identify the coefficients of power of t to obtain
(3.9).

Similarly, we obtain (3.10) by replacing �G:��x and �G:��t in (3.7) by
their respective values. K

Corollary 3.1. Differentiating the relations (3.9) and (3.10) m times
(m�n), and letting Dm=d m�dxm, we obtain the following relations for
0�m�n, with n�0:

(:+m) DmB:
n+d+1(x)

=Dm+1B:
n+d+2(x)&xDm+1B:

n+d+1(x)+ :
d+1

k=1

#kDm+1B:
n+d+2&k(x),

(3.11)

(n+d+1&m) DmB:
n+d+1(x)

=xDm+1B:
n+d+2(x)& :

d+1

k=1

k#kDm+1B:
n+d+2&k(x). (3.12)

Theorem 3.1. The sequence of derivatives [Dm+1B:
n]n�0 , (m<n) also

satisfies a recurrence relation of order d+1:

(n+d+1&m) Dm+1B:
n+d+2(x)

=(n+d+1+:) xDm+1B:
n+d+1(x)

& :
d+1

k=1

[n+d+1+k:&(k&1)m] #k Dm+1B:
n+d+2&k(x),

0�m�n; n�0. (3.13)

Proof. We cancel DmBn+d+1(x) by taking a linear combination of
(3.11) and (3.12). K

Remark. It follows that the sequence [B:
n]n�0 (:{&1, {&2, ...) is a

sequence of d-dimensional classical orthogonal polynomials.
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4. PROPERTIES OF [B:
n]n�0

Remarks. (a) From the generating function (3.4) and Cauchy's integral
formula, [B:

n]n�0 can be written in the form

B:
n(x)=

1
2?i �

dt
tn+1(1&xt+�d+1

k=1 #ktk):

=
1

2?i#:
d+1

�
dt

tn+1 >d+1
k=1 [t&{k(x)]: , (4.1)

where {1(x), {2(x),..., {d+1(x) are the (d+1) zeros of

1&x{+ :
d+1

k=1

#k{k=0, (4.2)

with |{1(x)|�|{2(x)|�...�|{d+1(x)|.

(b) We can see that B:
n(x) behaves like the n th power of 1�{1(x).

Lemma 4.1. The recurrence relation (3.8) can be written in the form

xb=Mb, (4.3)

where

B:
0

b=_B:
1(x)&b

and

_ &M=

#1

1
:

0 0 } } }

.

2:
:+1

#2 #1

2
:+1

0 } } }

3:
:+2

#3

2:+1
:+2

#2 #1

3
:+2

} } }

} } } } } } } } } } } } } } }

(d+1):
:+d

#d+1

d:+1
:+d

#d
(d&1) :+2

:+d
#d&1 } } } } } }

0 } } } } } } } } } } } }

} } } } } } } } } } } }
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Proposition 4.1. The moments of L& are given by

L&(xn)=Mn
0, & , n�0, (4.4)

where Mn
0, & is the element of the first line and the (&+1)th column of Mn.

Proof. Multiplying the relation (4.3) (n&1) times by M, we obtain

xnb=Mnb.

In particular

xn= :
j�0

Mn
0, jB

:
j (x).

Applying now L& , we get

L&(xn)= :
j�0

Mn
0, j L&(B:

j (x))=Mn
0, & . K

Lemma 4.2. The forms [L&]&�0 satisfy the relation

&L&&1( p)
:+&&1

&(:+&)
L&(xp)
:+&

+ :
d+1

k=1

(k:+&) #k
L&+k&1( p)

:+&+k&1
=0, \p # P.

(4.5)

Proof. We have

xn+1b=Mn+1b.

In particular

xn+1= :
j�0

Mn+1
0, j B:

j (x)= :
j�0

Mn
0, jxB:

j (x).

Applying now L& , we get

L&(xn+1)=Mn+1
0, & =

&
:+&&1

Mn
0, v&1+ :

d+1

k=1

k:+&
:+&+k&1

#kMn
0, v+k&1.

That is,

L&(xn+1)=
&

:+&&1
L&&1(xn)+ :

d+1

k=1

k:+&
:+&+k&1

#kL&+k&1(xn),

and by the linearity of L& , this relation is true for any polynomial p; thus
(4.5) follows. K
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Lemma 4.5. Let [L� v]&�0 be the dual sequence of [DBn+1]n�0 ; then

L&+1( p)=L� v( p$)=
L&( p$)
:+&

& :
d+1

j=2

( j&1) #j
L&+j ( p$)
:+&+j

, \p # P. (4.6)

Proof. Adding term by term the relations (3.9) and (3.10), we obtain

(:+k) B:
k(x)=DB:

k+1(x)& :
min(k, d+1)

j=2

( j&1) #jDB:
k+1&j (x), n�0.

Applying now L� v , we get

L� v(Bk(x))=
$k, &

:+&
& :

min(k, d+1)

j=2

( j&1) #j
$k, &+j

:+&+j
.

Thus

L� &+1=
L&

:+&
& :

d+1

j=2

( j&1) #j
L&+j

:+&+j
,

and by the linearity of L& and L� v this relation is true for any polynomial
p; thus (4.6) follows. K

Theorem 4.1. The forms L& �(:+&) have an integral representation in
the form

L&( f )
:+&

=|
x2

x1

w&(x) f (x) dx=|
x2

x1
|

t2 (x)

t1(x)
t&K(x, t) f (x) dt dx, (4.7)

with

K(x, t)=constant \1&xt+ :
d+1

k=1

#ktk+
:&1

=constant `
d+1

k=1

[t&tk(x)]:&1, if :>0.

That is,

w&(x)=|
t2(x)

t1 (x)
t& `

d+1

k=1

[t&tk(x)]:&1 dt, (4.8)

where t1(x)={1(x), t2(x)={2(x), ... and x1 and x2 are two values such that
{1(x)={2(x).
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Proof. From (4.5) we have

|
x2

x1
|

t2(x)

t1 (x)
t&K(x, t) _&

t
&(:+&)x+ :

d+1

k=1

(k:+&) #k tk&1& dt f (x) dx=0.

This implies that

|
x2

x1
|

t2(x)

t1 (x)
t&K(x, t)

(���t)[t&(1&xt+�d+1
k=1 #ktk):]

t&(1&xt+�d+1
k=1 #ktk):&1 dt f (x) dx=0.

Hence, it is sufficient to take

K(x, t)=h(x) \1&xt+ :
d+1

k=1

#ktk+
:&1

,

and to have

1&xt+ :
d+1

k=1

#k tk=0, for t=t1(x) and t=t2(x), (if :>0).

Thus the limits of integration are t1(x)={1(x) and t2(x)={2(x); in addi-
tion x1 and x2 are two values such that {1(x)={2(x).

To determine h(x), let W&+1 be a primitive of w&+1 ; then we have

L&+1( f )=(&+:+1) |
x2

x1

w&+1(x) f (x) dx

=&(&+:+1) |
x2

x1

W&+1(x) f $(x) dx,

and from (4.6), we get

&(&+:+1) W&+1(x)

=wv(x)& :
d=1

j=2

( j&1) #j w&+j (x)

=h(x) |
t2 (x)

t1(x)
t& \1&xt+ :

d+1

j=1

#j t j+
:&1

_1& :
d+1

j=2

( j&1) #j t j& dt

=&h(x) |
t2 (x)

t1 (x)
t&+:+1 _t&1 \1&xt+ :

d+1

j=1

#jt j+&
:&1

_
�
�t _t&1 \1&xt+ :

d+1

j=1

#j t j+& dt

=
(&+:+1)

:
h(x) |

t2(x)

t1(x)
t& _1&xt+ :

d+1

j=1

#j t j&
:

dt.

444 AMMAR BOUKHEMIS



File: 640J 307811 . By:DS . Date:18:08:01 . Time:04:42 LOP8M. V8.0. Page 01:01
Codes: 1888 Signs: 792 . Length: 45 pic 0 pts, 190 mm

Differentiating the last expression with respect to x, we obtain (4.8) with
h(x)=constant. K

Remark. When d=1, we obtain

w0(x)=constant[t2(x)&t1(x)]2:&1,

which is the density function of Gegenbauer's polynomials.

5. STUDY OF THE CASE d=2

Corollary 5.1. If we put #1=;, #2=#, and #3=$, we obtain from
relations (3.4), (3.8), and (3.13), with d=2,

G:(x, t)=[1&(x&;) t+#t2+$t3]&:

= :
n�0

B:
n(x) tn, for n{&1, {&2, ... (5.1)

B:
0(x)=1; B:

1(x)=:(x&;);

=B:
2(x)=

:
2

[(:+1)(x&;)2&2#];

(n+3) B:
n+3(x)=(n+2+:)(x&;) B:

n+2(x)&(n+1+2:) #B:
n+1(x)

&(n+3:) $B:
n(x), n�0

(5.2)

and

(n+3) Dm+1B:
n+4(x)=(n+3+:)(x&;) Dm+1B:

n+3(x)

&(n+3+2a+m) #Dm+1B:
n+2(x)

&(n+3+3:+2m) $Dm+1B:
n+1(x),

0�m�n; n�0. (5.3)

Corollary 5.2. Let

B:
n(x)=

[:]n

n!
B� :

n(x) and Q:
n(x)=

DB� :
n+1(x)

n+1
,

where [:]n=:(:+1) } } } (:+n&1), n�1, and [:]0=1.
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Then the sequences [B� :
n]n�0 and [Q:

n]n�0 are two monic sequence. Then
satisfy, respectively, the following recurrence relations:

B� :
0=1; B� :

1(x)=x&;; B� :
2(x)=(x&;)2&

2#
:+1

;

B� :
n+3(x)=(x&;) B� :

n+2(x)&
(n+2)(n+1+2:)

(n+1+:)(n+2+:)
#B� :

n+1(x)= (5.4)

&
(n+1)(n+2)(n+3:)

(n+:)(n+1+:)(n+2+:)
$B� :

n(x), n�0

and

Qn+3(x)=(x&;) Qn+2(x)&
(n+2)(n+3+2:)

(n+2+:)(n+3+:)
#Qn+1(x)

&
(n+1)(n+2)(n+3+3:)

(n+1+:)(n+2+:)(n+3+:)
$Qn(x), n�0. (5.5)

Remarks. (a) The sequence [B� :
n]n�0 corresponds to the case A in [5]

(which is not 2-symmetric when ;=0, because it can be concluded that
#1

n+1{0), and from this, the conclusions concerning this case are not
complete.

(b) The relations of Section 3 are between the polynomials of the
same index. If we omit this restriction, we can find other sample relations
that generalize the classical identities of Gegenbauer's polynomials. Note,
for example,

DmB:
n(x)=(&1)m [:]m B:+m

n&m(x); (5.6)

Q:
n(x)=B� :+1

n (x); (5.7)

B� :+1
n (x)=

n!
(n+:)!

D:B� :
n+:(x), if : # N ; (5.8)

B� :
n+3(x)=(x&;) B� :+1

n+2(x)&
2(n+2)
n+2+:

#B� :+1
n+1(x)

&
3(n+1)(n+2)

(n+1+:)(n+2+:)
$B� :+1

n (x); (5.9)
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and

B� :
n+3(x)=

1
3(n+2+:) {2(n+2)[(x&;)2&#] B� :+1

n+1(x)

&
(n+1)(n+2)

n+1+:
[#(x&;)+2$] B� :+1

n

+((n+2+3:)(x&;) B� :
n+2(x))= ,

n�0. (5.10)

Proposition 5.1. If the equation

Z(x, {)=1&(x&;) {+#{2+${3=0. (5.11)

has a double root {1(x)={2(x), then x must satisfy the equation

P(x)=&4$(x&;)3&#2(x&;)2+18#$(x&;)+4#3+27$2=0. (5.12)

Proof. We have

�Z
�{

=&(x&;)+2#{+3${2=0, =Z(x, t)=1&(x&;){+#{2+${3=0.

Thus {=(9$+(x&;)#)�2[3$(x&;)+#2], and if we replace { by this
value, we obtain (5.12). K

Proposition 5.2. If : # N (:>0), then

w0(x)=
(&1):

:
[t2(x)&t1(x)]2:&1 :

:&1

k=0

\ k
:&1+

\ :
2:+k&1+

_[t1(x)&t3(x)]:&1&k [t2(x)&t1(x)]k

=
(&1):

:
[t2(x)&t1(x)]2:&1 :

:&1

j=0 { :
:&1

k=j

(&1) j+k \
k

:&1+\
j
k+

\ :
2:+k&1+=

_[t2(x)&t3(x)] j [t1(x)&t3(x)]:&1&j, (5.13)
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and

w1(x)=(&1): [t2(x)&t1(x)]2:&1 :
:&1

k=0

\ k
:&1+

\ :&1
2:+k+

_[t1(x)&t3(x)]:&1&k [t2(x)&t1(x)]k [(:+k) t2(x)+:t1(x)].

(5.14)

Proof. We have

w0(x)=|
t2 (x)

t1(x)
[t&t1(x)]:&1 [t&t2(x)]:&1 [t&t3(x)]:&1 dt

=|
t2 (x)

t1(x)
[t&t1(x)]:&1 [t&t2(x)]:&1 :

:&1

k=0 \
k

:&1+
_[t&t1(x)]k [t1(x)&t3(x)]:&1&k dt

= :
:&1

k=0
\ k

:&1+ [t1(x)&t3(x)]:&1&k

_|
t2 (x)

t1(x)
[t&t1(x)]:&1+k [t&t2(x)]:&1 dt

=
(&1):

:
[t2(x)&t1(x)]2:&1 :

:&1

k=0

\ k
:&1+

\ :
2:+k&1+

_[t1(x)&t3(x)]:&1&k [t2(x)&t1(x)]k.

The relation (5.14) can be obtained similarly, by writting

w1(x)=|
t2 (x)

t1 (x)
[[t&t1(x)]+t1(x)][t&t1(x)]:&1 [t&t2(x)]:&1

_[t&t3(x)]:&1 dt. K

Theorem 5.1. The sequence of polynomials [B:
n]n�0 satisfies the fol-

lowing third-order differential equation,

r1, n(x) S3(x) Y (3)+b3, n(x)Y"+c2, n(x)Y$+d1, n(x)Y=0, (5.15)
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with

S3(x)=3P(x),

r1, n(x)=3(3n+3:+1) #$x+2n#3+27(n+1+3:) $2,

b3, n(x)=
2:+3

2
DS3(x) r1, n(x)&Dr1, nS3(x),

c2, n(x)=3[[(n&2&3:)(n+5+3:)+2n(n+3:)] $x

+(n&1)(n+1+2:) #2] r1, n(x)

&[6(n&2&3:) $x2+(n&3&6:) #2x&9(n&1) #$] Dr1, n ,

d1, n(x)=n(n+3:)[3(n+3+3:) $r1, n(x)&(6$x+2#2) Dr1, n],

(5.16)

and the substitution x [ x+;.

Proof. Differentiating the relation (5.2) with n replaced by n&2, we
have

(R1) (n+1) DB:
n+1&(n+:) xDB:

n+(n+2:&1) #DB:
n&1

+(n+3:&2) $DB:
n&2&(n+:) B:

n=0.

By eliminating DB:
n&2 , using the relations (R1) and (3.11), in which we

replace m by 0 and change n to n&3, we obtain

(R2) 3DB:
n+1&(n+:) B:

n&2xDB:
n+#DB:

n&1=0.

In the same way, eliminating DB:
n+1 by taking a linear combination of

relation (3.11) and (R2), we get

(R3) 3(n+3) B:
n+1&2(x2&3#) DB:

n&(n+3:) xB:
n+(#x+9$) DB:

n&1=0,

and then differentiating (R3) and eliminating DB:
n+1 , we obtain

(R4) &2(x2&3#) D2B:
n+(n&3:&2) xDB:

n+n(n+3:) B:
n

&n#DB:
n&1+(#x+9$) D2B:

n&1=0.

Using (R2) and (3.11), we eliminate DB:
n&1 and replace n by n&1; we

obtain

(R5) (#x+9$) DB:
n&n#B:

n&2(3$x+#2) DB:
n&1&3(n+3:&1) $B:

n&1=0.
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Differentiating (R5) and eliminating D2B:
n&1 using (R4), we have

(R6) S3(x) D2B:
n+[2(n&2&3:)(3$x2+#2x)&(n&1)(#x+9$)#] DB:

n

+2n(n+3:)(3$x+#2) B:
n&r1, n(x) DB:

n&1=0.

Finally we differentiate (R6) and eliminate D2B:
n&1 and then DB:

n&1 by
combining it with relations (R4) and (R6) to obtain Eq. (5.15). K

Theorem 5.2. The zero of r1, n(x) is an apparent singularity of the
differential equation (5.15).

Proof. (We use the same notation as that given in [8].) Set X=x&r*,
where r* is the zero of r1, n(x) (r*=(&2n#3+27(n+1+3:) $2)�
3(3n+1+3:) #$). Then Eq. (5.15) can be written in the form

_S3(r*)+DS3(r*) X+
D2S3(r*)

2
X2+

D3S3(r*)
6

X3& X3Y (3)+
1

Dr1, n

+_b3, n(r*)+Db3, n(r*) X+
D2b3, n(r*)

2
X2+

D3b3, n(r*)
6

X3& X2Y"

+
1

Dr1, n _c2, n(r*) X+Dc2, n(r*) X2+
D2c2, n(r*)

2
X3& XY$

+
1

Dr1, n
[d1, n(r*) X 2+Dd1, n(r*) X3] Y=0.

Then

f0(\)=\(\&1)(\&2) S3(r*)+\(\&1)
b3, n(r*)

Dr1, n
,

f1(\)=\(\&1)(\&2) DS3(r*)+\(\&1)
Db3, n(r*)

Dr1, n
+\

c2, n(r*)
Dr1, n

,

f2(\)=\(\&1)(\&2)
D2S3(r*)

2
+\(\&1)

D2b3, n(r*)
2Dr1, n

+\
Dc2, n(r*)

Dr1, n
+

d1, n(x)
Dr1, n

,

f3(\)=\(\&1)(\&2)
D3S3(r*)

6
+\(\&1)

D2b3, n(r*)
6Dr1, n

+\
D2c2, n(r*)

2Dr1, n
+

Dd1, n(x)
Dr1, n

.
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Therefore, the indicial equation relative to x=r* is

f0(\)=\(\&1) _(\&2) S3(r*)+
b3, n(r*)

Dr1, n &=\(\&1)(\&3) S3(r*)=0,

and consequently, the exponents of Frobenius are

\0=1, \1=2, and \2=3.

Since

\1&\2=1 and \0&\2=3,

the necessary and sufficient conditions are that

F1(0)=0; F3(0)=0;
�F3

�\ }\=0

=0.

We have

F1(0)=f1(0)=0,

and

F3(\)=f1(\) f1(\+1) f1(\+2)+f0(\+1) f0(\+2) f3(\)

&f0(\+1) f1(\+2) f2(\)&f2(\+1) f0(\) f1(\).

Thus F3(\)=0 because f1(0)=f0(1)=0, and

�F3

�\ } \=0

=f1$(0)[ f1(1) f1(2)&f2(1) f0(2)],

because f1(0)=f0(1)=f $0(1)=0.
Since

f1(1) f1(2)&f2(1) f0(2)=2 { c2, n(r*)
[Dr1, n]2 [Db3, n(r*)+c2, n(r*)]

&
b3, n(r*)
[Dr1, n]2 [Dc2, n(r*)+d1, n(x)]==0,
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we have

�F3

�\ } \=0

=0.

Remarks. (a) This result constitutes an extension of Hahn's theory
[10].

(b) The solution of (5.15) is analytic at x=r* and can be written in
the form

Y(x)=x\ :
k�0

gkxk, (5.17)

where the coefficients gk satisfy the following recurrence relations:

g0 f0(\)=0

g1 f0(\+1)+g0 f1(\)=0

g2 f0(\+2)+g1 f1(\+1)+g0 f2(\)=0 = (5.18)

gm(\+m)+gm&1 f1(\+m&1)+gm&2 f2(\+m&2)

+gm&3 f3(\+m&3)=0, m�3.

6. STUDY OF THE PARTICULAR CASE WHEN #=0

Theorem 6.1. When #=0 (i.e., the sequence [B:
n]n�0 is 2-symmetric),

the differential equation (5.15) becomes a differential equation of a hyper-
geometric type, where the solutions are hypergeometric functions 3F2 .

Proof. It is straightforward to show that when #=0, Eq. (5.15) can be
written as

(27$&4x3) Y (3)&6(2:+3) x2Y"+[3n(n+2:+1)&(3:+2)(3:+5)] xY$

+n(n+3:)(n+3:+3) Y=0. (6.1)

By changing the variable 4x3=27$X and putting X (d�dX )=%, Eq. (6.1)
can be written in the form

_% \%&
1
3+\%&

2
3+&X \%&

n
3+\%+

n
6

+
:
2+\%+

n
6

+
:+1

2 +& Y=0,
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which is a hypergeometric differential equation, with solutions

Y1(x)=constant3 F2 \&
n
3

,
n
6

+
:
2

,
n
6

+
:+1

2
;

1
3

,
2
3

; X+ (6.2)

Y2(x)=constant X1�3
3F2 \&

n&1
3

,
n
6

+
:
2

+
1
3

,
n
6

+
:+1

2
+

1
3

;
2
3

,
4
3

; X+
(6.3)

and

Y3(x)=constant X 2�3
3F2 \&

n&2
3

,
n
6

+
:
2

+
2
3

,
n
6

+
:+1

2
+

2
3

;
4
3

,
5
3

; X+ . K

(6.4)

Remarks. (a) Note that

Y1(x)=B:
3n(x)= :

n

k=0

(&1)n&k [:]n+2k$n&k

(3k)! (n&k)!
x3k,

= (6.5)Y2(x)=B:
3n+1(x)=x :

n

k=0

(&1)n&k [:]n+2k+1$n&k

(3k+1)! (n&k)!
x3k,

Y3(x)=B:
3n+2(x)=x2 :

n

k=0

(&1)n&k [:]n+2k+2 $n&k

(3k+2)! (n&k)!
x3k,

with

[:]n=:(:&1) } } } (:+1&n), n�1;
[:]0=1. =

This gives us an explicit form of the polynomials B:
n(x), which may be

written in the form

B:
n(x)= :

[n�3]

k=0

(&1)k [:]n&2k $k

(k)! (n&3k)!
xn&3k. (6.6)

(b) If we put

B:
3n(x)=D:

n(x
3),

B:
3n+1(x)=xE :

n(x3), and B:
3n+2(x)=x2F :

n(x3), (6.7)

it is easy to show that each of the sequences [D:
n]n�0 , [E :

n]n�0, and
[F :

n]n�0 also satisfies a recurrence relation of order 3.
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J. Appprox. Theory 82 (1995), 177�204.

7. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, ``Higher Transcendental
Functions,'' Vol. 3, McGraw�Hill, London�New York�Toronto, 1955.

8. E. L. Ince, ``Ordinary Differential Equations,'' Dover, New York, 1956.
9. J. Van Iseghem, ``Approximants de Pade� Vectoriels,'' The� se d'e� tat, Univ. des Sciences et

Techniques de Lille-Flandres-Artois, 1987.
10. W. Hahn, U� ber lineare Differentialgleichungen, deren Lo� sungen einer Rekursionsformel

genu� gen, Math. Nachr. 4 (1951), 1�11.
11. W. Hahn, U� ber die jacobischen Polynome und zwei verwandte Polynomklassen, Math. Z.

39 (1935), 634�638.
12. H. L. Krall, On derivatives of orthogonal polynomials, I, Bull. Amer. Soc. 42 (1936),

423�428.
13. P. Maroni, L'orthogonalite� et les re� currences de polynômes d'ordre supe� rieur a� deux, Ann.
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